
N AD-A240 869 9

Semi-Annual Report

I
DEVELOPMENT OF PARALLEL ARCHITECTURES FOR SENSOR ARRAY

IPROCESSING ALGORITHMS

,-~ *' Subm itted to:

Department of the Navy
Office of the Chief of the Naval Research

Arlington, VA 22217-5000

I1 Submitted by:

M. M. Jamali Principal Investigator

S. C. Kwatra Co-Investigator

I AbdelHamid Djoudi Research Associate

Rajesh Sheelvant Graduate Research Assistant

Manoj Rao Graduate Research Assistant

I
Department of Electrical Engineering

College of Engineering
The University of Toledo

Toledo, Ohio 43606

A
August 1991I 91-11806

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

I
I

ABSTRACT

I
The high resoiutiun direction-of-arrival (DOA) estimation has been an

I important area of research for a number of years. Many researchers have developed

a variety of algorithms to estimate the direction of arrival. Another important

aspect of the DOA estimation area i [he development of high speed hardware

S capable of computing the DOA in real time. In this research we have first focussed

on the development of parallel architecture for multiple signal classification

I (MUSIC) and estimation os signal parameters by rotational invariance technique

(ESPRIT) algorithms for the narrow band sources. These algorithms are substituted

with computationaly efficient modules and converted to pipelined and parallel

3 algorithms. For example one important computation of eigendecomposition of the

covariance matrix has been performed using Householders transformations and QR

method. MUSIC/ESPRIT algorithms are also shown in detailed pipeiined

I towchart. Systolic architectures are developed for both MUSIC/ESPRIT algorithms.

Two other approaches of using cordic processors and single instruction multiple

L data (SIMD) machines for the computation of MUSIC/ESPRIT algorithms are also

being studied.

The second part of this research is to perform DOA estimation for the

wideband sources. Current literature is being studied and at the present time three

algorithms are under investigation. For one of the three algorithms we have

proposed a computationally simple algorithm and its flowchart is also shown.

Chapter I presents theoretical and mathematical aspects of MUSIC/ ESPRIT

algorithms. These algorithms are modified and parallelized and described in

I Chapter II. Hardware implementations of tnese algorithms are given in Chapter III.

I

I

Cordic Processor approach is shown in Chapter IV. Wideband case is presented in

chapter V. 3
U

~I

I
I
!I
I
I

i I

I

I

I
I

Table of Contents

I ABSTRACT

LIST OF FIGURES V

LIST OF TABLES vii

I Chapter

I Introduction to array signal processing I

I Data model 1

MUSIC algorithm 7

I ESPRIT algorithm 12

3 TLS ESPRIT algorithm 15

Improved TLS ESPRIT algorithm 18

I I Parallelizing of MUSIC/ESPRIT algorithms 22

Introduction 22

I Data covariance matrix formation 26

* Householders transformation 29

QR method 38

5 Power method 43

Computational modules for ESPRIT 44

I III Hardware implementation 47

Introduction 47

Literature search 48

3 Systolic architecture for formation of data

covariance matrix 49

n Systolic architecture for Householders transformation 51

Systolic architecture for QR method 53

Hardware implementation of Power method 57I
II iii

7

I

Hardware block diagram of MUSIC & ESPRIT algorithm 59

IV The CORDIC processor approach 63 1
Introduction 63 1
The CORDIC algorithm 63

CORDIC functions and accuracy 68

The CORDIC iteration 70

The angle and rotation computing sequence 71 1
Angle computation 72 a
Rotation computation 75

The QR algorithm 77 3
Computation of eigenvalues 77

Computation of eigenvectors 81 1
Step by step array selection and processing 82 5
Description of the parallel hardware block diagram 86

Precedence and parallelism of the computation 89

Eigenvalue computation 89

Eigenvector computation 92 1
V DOA estimation for wideband sources 95 3
VI Conclusions 100

Work performed 100 5
Future work 101

References 102 U
i

iv I

LIST OF FIGURES

Figure

1.1 A two sensor array

1.2 Typical array scene

1.3 Signal subspace & array manifold for a two-source example

1.4 Sensor array for ESPRIT

2.1 Flowchart of MUSIC algorithm

2.2 FlowLhart for pipelined arrangement for ESPRIT

2.3 Flowchart for parallel Householders algorithm

2.4 Detailed flowchart of ESPRIT algorithm

3.1 Systolic architecture for the computation of covariance matrix

3.2 Systolic architecture for Householders transformation

3.3 Operation performed by different processors ,

3.4 Parallel flowchart for QR algorithm

3.5 Systolic architecture for QR Algorithm .
3.6 Operation performed by different processors

3.7 Flowchart for power method

3.8 Hardware block diagram for MUSIC algorithm

3.9 Hardware block diagram for ESPRIT algorithm

4.1 Original vector P and the same vector after rotation by ± x -

4.2 Input output functions for the CORDIC modes

4.3 Binary representation of angles in CORDIC

4.4 Calculation of angle 0 by which the two vectors 'a' and 'b' are rotated

4.5 Selection of windows for row operations for eigenvalues

4.6 Selection of windows for the column operations for eigenvalues

V

3
I

4.7 Windows for Q3T and Q1 operation,-

4.8 Selection of windows for the row operations for the eigenvectors

4.9 Parallel hardware block diagram of a CORDIC block for the computation

of QR decomposition

4.10 Windows for Q4T and Q2 operations i
4.11 Flowchart of operations for computing eigenvalues and eigenvectors

5.1 Estimation of angle of arrival for broadband signals I

VI

!
I
I

I

I
I
I
I
I

I

I LIST OF TABLES

I
4.1 Sequence of steps for computing angle

i 4.2 Sequence of steps for computing rotation

I
i
i
I
I
I
i
i
I
I
I
i
I
U
i vii

Chapter I

INTRODUCTION TO ARRAY SIGNAL PROCESSING

1.1: INTRODUCTION

The high resolution direction-of-arrival (DOA) estimation is important in

many sensor systems. It is based on the processing of the received signal and

Im extracting the desired parameters of the DOA of plane waves. Many approaches

have been used for the purpose of implementing the function required for the DOA

estimation including the so called maximum likelihood (ML) and the maximum

i entropy (ME) methods [1-3]. Although they are widely used, they have met with

only moderate success. The ML method yields to a set of highly non linear

I equations, while the ME introduces bias and sensibility parameters estimates due to
.~.c of , in,_c .. ,-o (e.g. AR ra4the in ARA). The Multiple Signal

• ; 0. A a± A, il A" I- -C ,Z A , g ,rah , 'h 'R

Classification (MUSIC) and the Estimation of Signal Parameters by Rotational

Invariance techniques (ESPRIT) algorithms are two novel approaches used recently

to provide asymptotically unbiased and efficient estimates uf Lfic DOA 41iJ. They

3are believed to be the most promising and leading candidates for further study and

hardware implementation for real time applications. They estimate the so called
"I

signal subspace from the array measurements. The parameters of interest (i.e.

3determining of the DOA) are then estimated from the intersection between the array

manifold and the estimated subspace.I
i 1.2: DATA MODEL

3 For the purpose of understanding the advantages of using a sensor array in

3

23 I
DOA estimation, it is necessary to explore the nature of signals and noise the array is

desired to receive. It is well known that in active sensing situations, the scattered I
data fluctuates randomly about a true value representing a noise free signal. This is

due to noise effects and errors in a sensor arrav system. These fluctuations can be

both additive and multiplicative. The additive fluctuations are due to thermal

noise, shot noise, atmospheric noise, and other kinds of noise which are

independent of the desired signal. The multiplicative fluctuations are due to 5
measured errors in estimating the signal amplitudes, gai, variation, et. A noise

model that represents all these noise effects is, in general, difficult to obtain,

especially when some of the noise sources are dominant. Usually, based on the m

noise models, additive and/or multiplicative, the calculated probability of error, as a

function of the noise power, is practically similar in each case. This indicates that 3
the noise power rather than its specific characteristics, has more impact on the

sensor array performance. Moreover, one is usually concerned with the effects of

the additive noise on the output of a sensor array system. For this reason, an

additi. e noise would be appropriate to choose for the evaluation of the performance

of a system. This noise represents the totality of small independent sources, and by 3
•,irfie of the cenfral limit theorem e'n2 can model the resulting noise as Gaussian

and (usually) stationary process. Also, to make the problem analytically tractable, we

focus on narrow band signals where it is assumed that the power of all emitter I
signals is concentrated in the same narrow frequency band. In this context, two

more assumptions that are of interest are invoked. First, we assume that the 3
sources are in the far field of the array, consequently the radiation impinging on the

array is in the form of plane waves, and secondly, the transmission medium is m

assumed to be isotropic so that the radiation propagates in straight line. Based on 3
these assumptions, the output of any array element can be represented by a time

advanced version or time delayed version of the received signal at a reference 3
I

i
* 3

element as shown in Figure 1.1.I
ASin 0

Plane wave

U0
Second Reference element

sensor
element . A ,,.-_U

3 Figure 1.1: A two sensor array

i Since the narrow-band signals are assumed to have the same known frequency c,

the received signals ai the reference sensor and the second sensor are respectively

given byI
s(t) = u(t) exp[j(ot + v(t))] (1.1)

3 s(t-t) = u(t-t) exp[j(co((t - "r)+ v(t- t))] (1.2)

3 where u(t), and v(t) are the amplitude and phase of s(t) respectively. The signal

s(t- z) at the second sensor is delayed by the time required for the plane wave to

3 propagate through A sin 0, and if c represents the velocity of propagation, then this

time delay T is given by

A sin 03 -= (1.3)

I The narrow band assumption implies that u(t) and v(t) are slowly varying

3 functions, thus:

I

4 1
functions, thus:

u(t) = u(t-T) (1.4) 1
v(t) = v(t-7) (1.5)

for all possible propagation delays. Thus the effect of a time delay on the received -

signal is simply a phase shift:

s(t-T)= s(t)exp(-jo.-) (1.6)

Now consider an array consisting of m sensors and receiving signals from d sources

located at directions 01 02, ... 0d with respect to the line of array, as shown in Figure

1.2.

I
I
I

I
1 5

00d

I I K 7 " K7 7 Sensors

I

*Reference element

Figure 1.2: Typical array scene.

It is assumed that none of the signals are coherent (i.e. lpij #1.). Using

superposition of signal contribution, the received signal at the kth sensor can be

I written as
d

Xk(t) = a k(0) i(t-T k(O i)) + n k(t)

i=l

= Xak(0i) S i(t) exp(-jco 0z ()) + n k(t) (1.7)I i=l

I where t k(O) is the propagation delay between a reference point and the kth sensor

for the ith, wavefront impinging on the array from direction 0i, a k(O) is the

corresponding sensor element complex response (gain and phase) at frequency

3 , and nk(t) stands for the additive noise at the kth sensor. If we let

I
I

3
6 H

a(6 1) ={a 1(0 i)exp(jw0 t I(O)) a mkO i)exp(jwo-c m((i))}K (1.8) I
Where denotes complex conjugate transpose

and n(t) = I n ,(t), n 2,(.............. nm(t)I T

the data model representing the outputs of m sensors becomesdI

x(t)=I a(0 i)s i(t) +n(t) (1.9)
i=1

Now by setting

A(0) =(a(0 1), a(0 2), ... ,a(0d)) (1.10) I
and 1

a dS(t) =(S 1(t), S 2(t), ..., IS d(t))T
(.1

x(t) can be rewritten as

x(t) = A(0) s(t) + n(t) (1.12)

where C x
x(h, n(t) s Cm , S(t) E Cd and A(0) E Cmxd

A(0) is called the direction matrix. The columns of A(0) are elements of a set,

termed the array manifold, composed of all array response vectors obtained as

ranges over the entire space. If we assume that signals and noise are stationary, zero U
mean, uncorrelated random processes and further the noises in different sensors are

uncorrelated, the spati.1 correlation matrix of the observed signal vector x(t) is 3
defined by: H (1.13) i

R = E (x(t) x H(t)

I
1 7

where E is the expectation operator.

I The substitution of Equation (1.12) into (1.13) gives

I R XX = E (A(W) s(t) S(t)H (A())H+ 0 2. I

= -A(O) R SS A(O)H + (2 1 (1.14)

I where
R ,= E(s(ts(t) H)(1.15)

and (y2 . I is the spatial correlation matrix of the noise vector n(t), 02 denotes the

U variance of the elemental noise ni (t). i = 1, ... n

U
SI 1.3: MULTIPLE SIGNAL CLASSIFICATION (MUSIC) ALGORITHM

I Consider first the noise free case where

Id

x(t) = _ a(0 i) s i(t) (1.16)

This means that x(t) is a linear combination of the d steering column vectors of A(6)

I and is therefore constrained to the d-dimensional subspace of Cm,, termed the signal

subspace, that is spanned by the d columns vectors of A(W). In this case the signal

subspace intersects the array manifold at the d steering vectors a(0 i) as shown in

I Figure 1.3.

I
I
U

U
8

Signal subspace

I
Array manitold

IaO3

I
U
I

Figure 1.3: Signal subspace and array manifold for a two-source example.

However, when the data is corrupted by noise, the signal subspace has to be 5
estimated and consequently it is expected that the signal subspace will not intersect

the array manifold, so the steering vectors closest to the signal subspace will be U
chosen instead [6]. In the following, it is shown that one set of d independent

vectors that span the signal subspace is given by the d eigenvectors corresponding to

the d largest eigenvalues of the data covariance matrix. The data covariance matrix 3
is assumed to be positive definite and Hermetian and consequently its

eigendecomposition is given by I
R =EAE H (E EH =1)

R: RX E=EA

×× I

I

H 9
(A(0)RSSA(O) + cy.I)E= EA

A(O)RSSA(O)HE =EA -Y2.E

E AH SA(O)H E EH E A - 2.E H

=A -Y .I

I
A (O) R S A () = E (A 2&) E H (O) H

Thus the eigenvalues of A(O) R SS A(6) are the d largest eigenvalues of RI2 2
augmented by T . Also the (m-d) smallest eigenvalues are all equal to Y2 Now if

3(X i. e i) is an eigenpair of R xx, then

Rxe i=X i e i (1.18)

and for any i > d,U
(A(0) Rss A (0) H 2. 2

A(0)R s5 A(O) H ei = 0 (1.19)I
Now from the fact that A(0) and Rs, must have at least one nonsingular

3 submatrix of order d and without loss of generality, suppose that this submatrix

consists of the first d rows of A 1(0) Rs,. Partition A j(0)Rss as:I
3 A(0) Rss = (A (O) R ss A 2 (0) Rss) T (1.20)

I The substitution of (1.20) into (1.19) yields
iA 1 (0) Rss A(O) H e i 0 (1.21)

andI
I

I

A 2(0) R s A(O) He 0 - 0 (1.22)

I
For the equation (1.21) to be satisfied,

H
A() ei=O i >d (1.23)

Thus e 1, e 2, ... e d span the same subspace spanned by the column vectors of

A(O). In most situations, the covariance matrices are not known exactly but need to

be estimated. Therefore, one can expect that there is no intersection between the

array manifold and the signal subspace. However, elements of the array manifold 3
closest to the signal subspace should be considered as potential solution. After

determining the number of sources [7], Smith [5] proposed the following function as 3
one possible measure of closeness of an element of the array manifold to the signal

subspace

P m(e) = (1.24)Ia (0) EE H n a(O) (

where E n = [ed+1 , ed+2, ,em]

The dominant d peaks over 0 E [- n, ir] are the desired estimates of the directions of

arrival. 3

For the particular case where the array consists of m sensors uniformly 3
spaced, and if the reference point is taken at the first element of the array, Pm(0) is

obtained by first calculating the DFT of the vectors spanning the null space of

A(0) R ss A() H or i
E n= ed+I, ed+2. *-rem] (1.25)

l, I

I

If A is the distance separating two sensors of the array, an element of the array

3 manifold is given by

I a(O) = (1 ,exp (j2 7rA sinO / X)..., exp (j2 7r(m-1)A sinO/ X)) T (1.26)

and the DFT of the vector e i, i > d is given by

I
F a* (0)e = e i exp(-j2 7E(k-1)A sinO/) (1.27)

thus

3 Pm(O)- I i2 (1.28)

Ik=1

Summary of the MUSIC algorithmI
1) Estimate the data covariance matrix R.

1 2) Perform the eigendecomposition of R.

3) Estimate the number of sources.
4) Evaluate P m(O).

3 5) Find the d largest peaks of P m(0) to obtain estimates of the parameters

I Although MUSIC is a high resolution algorithm, it has several drawbacks

5inciuding the fact that complete knowledge of the array manifold is required, and

that is computationaly very expensive as it requires a lot of computations to find the

3 intersection between the array manifold and the signal subspace. In the next section,

another algorithm known as ESPRIT will be discussed. Even though it is similar toI
I

I
12

the MUSIC and exploits the underlying data model but it eliminates the

requirement of a ti,.,--consuming parameter search. 5
1.4: ESTIMATION OF SIGNAL PARAMETERS VIA ROTATIONAL i
INVARIANCE (ESPRIT) i

Consider a planar array composed of m pairs of pair identical sensors 5
(doublets) as shown in the Figure 1.4. The displacement between two sensors in

each doublet is constant, but the sensor characteristics are unknown [5]. i

Figure 1.4: Sensor array for ESPRIT.!

The signal received at the it h doublet can be expressed asi

I
I

I
U d 13

X k(t)= £a k(O) s i(t)+ n k(t)

d

Y k(t)= a k(0 i) exp(jo0A sin 0 i/c) s i(t) + r, vk(t) (1.29)I i=1

where 0 is the direction of arrival of the ith source relative to the direction of

translational displacement vector. Employing vector notation as in the case of

MUSIC, the data vector can be expressed as:

3 x(t) A(0) s(t) + n x(t)

I y(t) = A(O) s(t) + n Y(t) (1.30)

I
where

3I jo A sin 0 1 joA sin Od

(D = diag(exp(c , exp(c

U Now, consider the matrices

C X= R XX- y2 II =A() R ss A*(0) (1.31)

I and
R xy = A(6) R ss 4D*A*(0)

(1.32)

3 In the computation of R X. the noise in different sensors is assumed to be

uncorrelated (E[n ×(t) n V(t) = 0).

The eigenvalues of the matrix pencil (C xx, R XV) are obtained by solving

U C××- yRy =0 (1.33a)

I
I

U
14

or

A(O) R SS (I- -y 4*)A*(0) = 0 (1 .33b)

Now from the fact that A(O) and R SS are full rank matrices, Equation (1.33b) reduces

to I
I - 7y* = 0 (1.34)

and the desired singular values are

jio)A sin 0 k

y k= exp(c) k=l,...,d (1.35)

Thus the direction of arrival can be obtained without involving a search 3
technique as in the MUSIC case, and in that respect computation and storage costs

are reduced considerably. Also it can be concluded can conclude that the generalized

eigenvalue matrix associated with the matrix pencil (C "I R xy) is given by:

A= 0 0 (1.36) I
However, due to error in estimating R , and R ×y from a finite data sample as

well as round-off errors introduced during the squaring of the data, the relation U
between A and (D given above is not exactly satisfied, which make this method

suboptimal.

U
The following procedure is proposed to estimate the generalized eigenvalues [7]

I

I
* 15

1) Find the data covariance matrix of the complete 2m sensors, denoted by R ZZ

5 2) Estimate the number of sources d.

3) Estimate the noise variance (average of the 2m - d noise eigenvalues).

4) Compute Rz 2 I, A(O) R , A*(O) and A(O) R 4D*A*(6) are then the top left

and top right blocks.

5) Calculate the generalized eigenvalues of the matrix pencil (C)x, R)y) and

choose the d ones that lie close to the unit circle.

U 1.5: TOTAL LEAST SQUARE (TLS) ESPRITI
The last method is based on having a very good estimate of the noise

variance, a condition difficult to satisfy in most real cases. This may yield overall

inferior results. To circumvent this difficulty to some extent, the total-least-square

,I (TLS ESPRIT) scheme is used instead.

I L e t x W)

z(t)= y(t) = A s(t) + n Z(t) (1.37)

where

w A nx(t)
A = A(' nz(t)= nv(t (1.38)I

and let E '= [e 1 , e2,... ed I be the (2m x d) matrix composed of the eigenvectors

corresponding to the d largest eigenvalues of (R zz, I). Since the columns of E s and A

span the same subspace, then there must exist a non-signular (d x d) T matrix such

I that
Es= A T (1.39)

I

I
16 1

Now define two m x d matrices E . and E y by partitioning E , as

I
Ex ATE-=E =lS (1.40)I

E AODTI

I
Since E X and E y share a common space (i.e. the columns of both E × and E are a

linear combination of the columns of A), then the rank of E ×y = [E X I E y] is d which

implies that there exist a unique 2d x d matrix F of rank d such that i

0=[EXI EyI F=E×F× +EyFy

I
=ATF +A(DTFY (1.41)

(F span the null-space of [E X I Ey]

In the above equation [Ex I E yJ is an m x 2d matrix, it can be seen as

consisting of m vectors in a 2d dimensional space, and the set of all vectors which

transform into the zero vector (i.e. which satisfy [E x I E y1 x = 0) is called the null

space of A, and it has a dimension 2d-rank [E x I E j or d. Now if 3
W=- FX[Fy (1.42)

then

AT + T-1 = A(D (1.43) 3
If A is assumed to be a full rank matrix: I

T IF T-1 = (D (1.44)

Thus the eigenvalues of IF correspond to the diagonal element of 0 I
I

I
* 17

I
Summary of the TLS ESPRIT

1) Obtain an estimate of the data covariance matrix R denoted bv R

3 2) Perform the eigendecomposition of R , as R Zz= E A E where

A= diag(. ,- 2n)

and

3 E=(ee e2n)

3 3) Estimate the number of sources d.

4) Obtain E,= [e, e... ed I and decompose it to

I .EX
obtaint iEv,

*Ex
5) Compute the eigendecomposition of E Xv*E E. [EX I Ev]=EAE

I and partition E into four d x d submatrices

U Ell E 12i ~ ~~E= E2E2
3J

6) Calculate the eigenvalues of P = - E 12[E2

I
7) Estimate 0 = ((D k

I k

Ik = S in carg(O k) (w0 A)

U
18 3

1.6: IMPROVED TLS ESPRIT

By considering the eigendecomposition of the data matrix R zz of rank d,

following equation can be written.

R17e =kie i = y e , i=d+l,...,2m (1.45)

Using the same procedure as in the MUSIC algorithm I

A G =0 (1.46)

I
where G= [ed+l, ed+2.... e 2I

I
Now from the fact that A and G can be partitioned as I

= A and G= G(1.47)

Hence 3
(AH,H A H) GX =0

(1.48)

or

A HG× X=-(D A HG v 0

A H -H AH

GHA =-G H q DA (1.49)II

I
* '9

By multiplying both sides of the above equation by T defined in Equation(1.39).

GXAT = -G H ADT (1.49a)I
or

GEX = -GHEy (1.49b)

Because E x and E y span the same subspace, then the objective in the previous TLS

algorithm is to find a matrix C dxd such that

3 xE= . (1.50)

I The substitution of (1.50) into (1.49b) yields

i
SE= - HE W (1.51)I

i Thus if there exist y which transforms E into E V, this transformation must also

transform- G HEx into GHE . (Note that- G HE and G HE span the same subspace

as spanned by the columns of E x or E y).I
In practical situations, where only a finitc number of noisy measurements are

i available, Equations (1.50) and (1.51) can not be satisfied exactly. A criterion for

i obtaining a suitable estimate of W must be formulated. The TLS is a method of

fitting that is appropriate in this case because Ex , E y, GH y E x, and GH , E x are all

3 noisy measurements.

i To find a common transformation which satisfies both (1.50) and (1.51) , define

I
I

i

20
E x Ey

H = H E and H 2= GH E (1.52)

thus y is given by 3
H 1 ,= H 2 (1.53)

I

The previous TLS algorithm applied to the model E x i = E y can be viewed as

using m observations (the number of rows of E, or E y). By using Equation (1.53), it 3
is easily verified that the number of observations is increased from m to 3m- d .

Thus a better e, .:mate of xV is believed to be achieved, and the algorithm of the

improved TLS will be the same as for the TLS with the exception of replacing E xy by 3
E H 1 H 2'

However the same solution for P can be achieved by considering instead the

d matrices

H H Hh

H 1 H 1 2i

Ki= H H (1.54) ih 2iH 1 h 21h 2I

I
th

where h 2i is the i column of the matrix H 2* If X d+1 is the smallest eigenvalues of

K , then

K i ed+1 =X xd+1 ed+1 (1.55) 3

I

I
*I 21

Now by transforming e d+I into X , X i solves the TLS problem and gives the 1h

I column of TP [8].

* This transformation is very useful for parallel processing as it avoids the

computation of F I to find TP. However this method has a disadvantage as the

I eigendecomposition of d matrices rmust be performed at the same time.

I
I
I
U
I

I
I
I
I
I
I
I

I
Chapter II

I
PARALLELIZING OF MUSIC/ESPRIT ALGORITHMSI

I 2.1: INTRODUCTION

5 First step in the development of parallel architecture for any algorithm is to

transform it into a computationally efficient algorithm. This is achieved by

I carefully studying the algorithm and substituting parts of the algorithm with easily

computable ones. For example MUSIC and ESPRIT involve the eigendecomposition

which can be written in FORTRAN language or can be computed by calling scientific

5 lsubroutines from commercially available packages. In this chapter efforts are

directed to obtain more efficient procedures for computing MUSIC and ESPRIT

I algorithms and have been explained in the following.

I MUSIC and ESPRIT involve intensive matrix eigendecomposition which

involve generalized eigenvalue analysis, that is equivalent to the determination of

the roots of characteristic polynomial as shown below:I
P() = det(R x -ki)I n-I+C) 21

(-1)n(Xn+C n-I X + C +I C 0 (2.1)

I The idea of explicitly computing the coefficients of a polynomial, at first glance may

* appear attractive in view of the fact that operations on a polynomial are easy to

perform. However as n increases, the round off errors in computing the coefficients

may lead to very large errors in the resulting roots. Generally all the methods

used in solving (2.1) are iterative. In fact the data covariance matrix R

I
* 22

I
23

can be transformed into a diagonal matrix by using the iterative scheme described

below.

If R = R 1 is an m x'm matrix and if Q 1 is an orthogonal matrix, it can be I
shown that the eigenvalues of R 1are invariant under a congruent transformation I
with Q 1.

R 1 X=X I
(Q 1H R 1 Q1)(QH X)=X(QH X) (2.2)

Thus if (X, X) is eigenpair of R1 then (Q H X, X) is eigenpair of Q H R1 Q1 = R2, where

QH denotes complex conjugate transpose of matrix Q. The same procedure is I

repeated for R 2 to obtain R 3 and so on. The matrices Q is are determined in

such a way that after a certain number of iterations the matrix R 1 converges to a

diagonal one.

I
The evaluation of eigenvalues and eigenvectors are very important in the

process of parallelizing the algorithm. Accuracy in the computations of eigenvalues I
and eigenvectors will also determine the accuracy of the angle of arrival. The DOA

computations need to be performed in real time, hence fast evaluation of

eigenvalues and eigenvectors are important. The averaging technique used at 3
various sensors produces a Hermetian covariance matrix from which the

eigenvalues and eigenvectors can be obtained.

Structured implementation suitable to the high resolution DOA estimation is

described for both MUSIC and ESPRIT algorithms. Figure 2.1 gives the flow chart of 3
a pipelined arrangement of MUSIC algorithm. The number of sensors depend on I

I

1 24

U Data base

Isint x

II

3 Comput, the eigendecomposition of

I R

Estimnate the number of

Isources d

Evlae me

II

Find the d largest peaks

3 of Pm(e)

I Figure 2.1: Flowchart for MUSIC algorithm

25 U
the number of sources need to be located at a given time. The number of sensors

should always be greater than the number of sources [4] [5]. Assuming that the

number of signals never exceeds seven, a sensor array of eight is considered in the

rest of this report.

As shown in Figure 2.1, the data is collected from the sensors. It consists of

noisy data vectors X(i's whose components are x j , where j and i mean jth sensor

and ith , sample respectively. Also a data point at a particular sensor consists of in-

phase and quadratic-phase components. The data covariance matrix R ,is U
computed using the sampled data.

The eigendecomposition is performed on Rx and m eigenvalues are derived

from which the number of sources is estimated by testing the null hypothesis that

the smallest eigenvalue has multiplicity m-d, namely Hd = k dl =)L d+2 ... = , m is

tested. The likelihood ratio for the problem, under Guassian assumption, is given

by

MI
m1-I i I

i=d+lJQd= \ M

1-Y m-d

whereX I> X 2 > ... > Xm3

The hypothesis H d (d = 0, 1 m-) are tested sequentially, and the smallest

likelihood ratio is chosen. The final phase of MUSIC is the determination of the 3
I

I
* 26

angle of arrival which can be approximated from the elements of array manifold

closest to the signal subspace by using the measure function Pm(O) described in

chapter I. The plotting of Pm(O) is computationaly very expensive as it requires the

calculation of Pm(0) for every angle 0 E (- r, n) to find the intersection between the

I array manifold and the signal subspace given by the d peaks of Pm(O).

Similar to pipelined MUSIC flowchart, a flowchart for TLS - ESPRIT

algorithm is shown in Figure 2.2. The different steps involved in estimating the

DOA using ESPRIT are given. ESPRIT is similar to MUSIC both of which exploit the

underlying data model, but it eliminates the computation of Pm(0) for every

possible 0. However it involves some more eigendecomposition, i.e., the

eigendecomposition of EH xy Exy and -E 12
E-1 22 and the inversion of matrix E 2 2 as

shown in Figure 2.2. Also one should note that the order of data covariance matrix

has increased from m to 2m. In the following sections, algorithms for various

I computational modules required in MUSIC and ESPRIT are developed.

* I2.2: DATA COVARIANCE MATRIX FORMATION

I Once the data has been collected by the sensors the data covariance matrix can

I be computed using

I
I
U
I
I

273

Data base I+ I

Estimate R. I
I

Compute the eigendecomposition of R x

Estimate the number of

sources d

Decompose

E e .'e,) Ex]
I

Compute the eigendecomposition of

yEx=Ex [E E] =EAEH

~I

Partition E into 4 .4 Ell E 12

m atrix E21 E

Obtain the eigenvalues of y= - E 2E-1

and estimate the angle of arrival 8 k = f-k) 3
Figure 2.2: Flowchart for pipelined arangement for ESPRIT 3

I
i 28

n

R = P=1 n (2.3)

Where R ×= Covariance of data matrix
th

x(p) = Vector of data output from every sensor at p sample

given by (x I, x 2, X 8)

i n Number of samplesi
The sampled data obtained from the sensors is used to obtain the data

covariance matrix given by equation (2.3). For instance, the element (ij) of Rx

denoted by R ij is computed as:

__Xi (p) x(p)

p=1

Since the covariance matrix is Hermetian, the computation of lower triangular

matrix of covariance matrix is sufficient to get complete information of the full

i matrix.

i The sequence of transformations described earlier as in equation (2.2) to

reduce the data covariance matrix to a diagonal one is one of the most efficient

algorithms for determining all the eigenvalues and eigenvectors. It is known as QR

algorithm. However when applied to a dense matrix, it is very time consuming,

requiring a large number of computations. In order to circumvent this drawback,

the data covariance matrix is transformed first to tridiagonal one using

Householders transformation. Chen [9] and Dongarra [101 discussed the reduction

I

U
29

of a Hermetian matrix to a tridiagonal matrix using Householders transformation.

The eigenvalues of R , are invariant under this transformation as the Householder I
transformation is orthogonal. Hence, the Householders transformation to reduce

the dense matrix to a tridiagonal matrix, QR method to reduce tridiagonal matrix to

a diagonal one, the power method to compute the angle of arrival are discussed

here.

2.3: HOUSEHOLDERS TRANSFORMATION

First the mathematical aspect of Householde" transformation is presented,

then its parallelization and its hardware implementation is explored. The method

of Householder [11], can effectively reduce the bandwidth of data covariance matrix

R xx by transforming it to a tridiagonal matrix T. In order to transform the m x m

data matrix into a tridiagonal one, m-2 Householder's transformations (N) are i
determined such that

NHR N =T

where N =N m2N m-3..N 1

0Uk o I
Nk= ONk0 N k I

k r-k

k m-k

I
andI

i

I

i H 30
_ 2 ww H

N k - H with N kE Cmxm and w E C"I w w/

* The matrices N k are determined to eliminate the elements above and below

the subdiagonals without disturbing any previously zeroed rows and columns. The

I basic iterative sequence of operations for this transformation method can be stated

i as

I = Rxx

begin
For k=1,2,...,m-2,

H H

Rk+1 = N k Rk Nk such that N k Nk=I

end

3 T=R m-2

i For k=l, the transformation can be written as

S HR 1

i where

r rx

I 1 m1

lr-I

1

31

Therefore

L=-11 11-
R2= J

I R

R2= 1 1_ __

1 1 i-1

In order for the first term N H r, to be null except for the first element, 'w'

should have the following form

w =r 1 + 3e1

where e 1 = (1, 0, 0, 0...)T

and r = (r 21,r 31 r nd)T

is a complex number that is to be determined.

-HH

_ = ww

IH I

I

H 322(r+ 3 e) (r + 3" e,)r

=rI (rH + P3*eH) (r + 3ei)

*e
For this equation to be satisfied, following can be written

(rH + 13*e) r, = (rH eT)(r +p1

or 2o r+2 *eT rrH r T + *~

I I e~IjIIr II++2 r~ r1 +2 el1r r+1elr 1 +13r e +

One solution is given by!*
rHr,= I

(2.4)
SeTr 1 =PrH e (2.5)

I multiplying both sides of (2.5) by P3*.

I T H(P*)2e, r, = P3 Pr, e, (2.6)

Substitution of (2.6) in (2.4) yields

I H H
r 1 r 1 r, e l

II
e1 r1I

i Using the fact that

I
I

U
33

r, r1 r

H *
r, e =r and
e~rl =r 1

This will give

)2 2 r 21

r 2

Multiplying and dividing the right hand side by r 21
* 2

(r
2)

(p") 2= p2 21

I

1 *

r 2 1 .r 21

(r21

2!-r 21

or
* r4 I

3= P31 r2

r 21 I

r 21 (2.7)

r 21

I
Bychosng]3gve b (.7,th frs clunofR hs h frm(r1,-[,, , ..0), I

I
I 34

and because of the Hermetian property the first row becomes (r I 01 , 0, 0,...0).i
In the following and for simplicity, a method is given to calculate the

elements of R 2 for the real case, i.e., the data is composed of in-phase components

only. The same method may be applied for the complex case where the data is

composed of in-phase and quadrature-phase components. Hence for real variables

I the Householders transformation reduces to:

I R 2 = N 1 R 1 N 1

IL' 2wwT] 2wwT]

-]I 1- -T .R, I---T-
WW WW

I T T
Ww RlW

2ww 2 ww R1ww

R 1 - -T R R, T +4 T T (2.8)
WW WW WWWWI

LetI
W=rl+Pe

l

W Tw w

c - 2

and,

I Rd= Rlw

I
I

!
35 I

Equation (2.8) can be rewritten as follows:

wdT dwT W (WT d) wT

RI=R 1 - c c + 2

T TT T T T

wd T d w (WT d) w w (w T d) w

R - C + 2 + 2c2.c 2.c

W W T d) T(T d W

=R1 - 2. C2 2. c 2(2.9)

Let I
dT dT wwT

c 2.c 2

then I

dT (wT d) wT
I

T
v - 22 .c 2

and from the fact that

dTw = wTd

d w (wT d)

c 2c 2

Also let I
I
I

I
36

w d

2c-

* Therefore

dSv= c -wp

I and equation (2.9) becomes
I T T

R 2 = R 1 - wv - vw (2.10)

I
U The choice of above equation is primarily motivated by the interest in the

application of parallel processing in computing the elements of the matrix R 2, that

is, all the columns of R 2 can be computed in parallel as:
R2j =Rlj -viW - wjiv

j=1,2 8
i th .th

where R 2, and R , are the j column of R 2 and R I , and v j and w j are the j

* components of v and w respectively.

* The flowchart for the Householders transformation showing its

parallelization and sequence of operations is as given in Figure 2.3. The values of

I 'w' and 'c' using the first column of R xx. These values of 'w' and 'c' are used to

compute all the d , in parallel. Once the d , are evaluated v s and 'p' are evaluated.

Using all the values evaluated as above new values of the elements of the column

B are computed. This is the first iteration. After

I
I

37 I

, I I

Compute new Compute new Comue ftew

elements of elements of---------elements of
clmcouncolumnIw --- - -- i -I

I !

I

Find p and v

i= i+l

I
rI

NoI

I
EEnd l

Figure 2.3: Flowchart for parallel Householders transformation

I

I
* 38

every iteration the counter is incremented. For m - 2 iterations the new values of

the columns which are computed are used in feedback loop to perform same

operations.

2.4: Q R METHOD

I
Given the tridiagonal matrix T and defining U = NH which is obtained using

I Householders transformation, QR algorithm may be used to compute eigenvalues

and eigenvectors. This is achieved by producing a sequence of transformations

based on orthogonal matrices and illustrated by the following algorithm.

I
T =T

U=NH

* begin
for k=1, n

I Rk =QkTk

H

k k± k

T Tk+1 RkQ k

[Uk+l =Q U k

end

After n iterations T will be approximately a diagonal matrix whose diagonal

elements are the eigenvalues of the original matrix. The matrix U will have rows

3 which are eigenvectors of the original matrix.

I
I

I

39 I
An example is given to calculate new values of T for real case. Suppose T k is

obtained at the kth, iteration and we want to calculate T k+1 the procedure s I
follows:

t T *T 'T

letQ Q n-I Q n-2.......Q I

where

1 0

010

cos sin roy i

I

-sin cos 0 rov1+1

0 1

-4 I

0I

I
Let the entries of the diagonal elements of tridiagonal matrix be a(m,k) and the

entries of subdiagonal elements be b(m,k) where mn is iow or column number and k

is iteration number. The c(m,k) and s(m,k) are sine and cosine that gives angle of

rotation of mt and (m+1)' rows and u(m,k) will be the eigenvectors at iteration k.

i
1 40

The tridiagonal matrix T is given by

a(l,k) b(2,k)
b(2,k) a(2,k) b(3,k)

b(3,k) a(3,k)
T=

ILi
I

From the k th iteration the updated T k+1 using the following equation can be

computed.
T T T

k~l n-I n-2"" Qi TkQI'" Qn-2Qn

However the updated entries b(i, k+1) and a(i, k+1) depend only on the matrices Q

and Q i- * They are calculated usingi
Qi QT Q (2.11)

i The possibility of parallelizing the QR algorithm is explored base on [15].

3 Detailed elaboration is given below. To derive the equations for parallel algorithm

the following parameters are defined:I
cos(i, k) = cl, cos(i-l, k) = cO, sin(i, k)= sl sin(i-1, k) = sO, a(i, k) = al a(i-1, k) =

t aO, a(i+1, k) = a2, b(i, k) = bl, b(i+1, k) = b2, a(i, k+1) = a3

E b(i, k+1) = b3

I
I

U

41 3
Substituting the above parameters in equation (2.11) i

b3 a3 x

Xx X-

Fl 0 0 iF cO sool Faob 0 co-so 0 1
=0cl sll -sOcO 0 blalb2 fsO cOo0 Ocl-si

-s c L 0 U L 0 b2a2iL 0 0 1l Osl cl

F 0 icO so0iF aObl 0 co-clsO-sOsil i
cl sl -s cO 0 b alb2 sO cod -cOsi

0 -scl 0 L 1 b2a2L 0 sl cl

1 0 0 - cOaO+sObl cOb l +s0al s0b2 co -clsO -s sl

0 cl S1 0 -sObl+cOal c~b2 sO cOcl -cOsl
0-S1 cl 0 b2 a2 L 0 sl cl I

By solving the above matrix the value of b(1, k+1) can be evaluated as

b(i, k+l) = (0, cl(-s0bl + c0al) + slb2, cclba+a2sl) [SO

Generalizing for the i'h element:

b(i, k+1) = s(i-1, k){c(i, k)[c(i-1, k)a(i, k)-s(i-1, k)b(i, k)] + s(i, k) i

b(i+1, k)} (2.12)

Let w = c(i, k)[-s(i-1, k) b(i, k) + c(i-1, k) a(i, k)] + s(i, k) b(i+i, k)

Substituting w in (2.12) i
b(i, k+1) = s(i-1, k) . w (2.13)

Similarly for a(i, k+1)
F-cidl I

a(i, k+1) = (0, cl(-s0bl + coal) + slb2, cOclb2 +a2sl) ccl
LslJ I

I

I
* 42

a(i, k+l) = c(i-1, k)c(i, k){c(i, k)[c(i-1, k)a(i, k)-s(i-1, k)b(i, k)]+s(i, k)

b(i+l, k)} +s(i, k)[c(i-1, k)c(i, k)b(i+l, k)+s(i, k)a(i+l, k) (2.14)

I Let v = c(i-1, k) c(i, k) b(i+l, k) + s(i, k) a(i+1, k)

i substituting w and v in equation (2.14)

a(i, k+l) = c(i-1, k) c(i, k) . w + s(i, k) . v (2.15)

U Similarly values of sin(i, k) and cos(i, k) can be calculated using the following

general relation.

I cos(i, k) = x(i+l, k)/r (2.16)

sin(i, k) = b(i-4-1, k)/r (2.17)

where x(i+1, k) is the updated a(i, k) after (i-l)t h rotation and is given by

3 x(i+l, k) = -sin(i-1, k)b(i, k) + cos(i-1, k)a(i, k)

and

r sqrt{[b(i, k)] 2 + x[(i+l, k)] 2I

I Using the above values, a pseudocode for the QR algorithm can be written. In

this algorithm first parameters are initialized and sine and cosine of the angle of

rotation using elements of the matrix as in the equations (2.16) and (2.17) are

3 computed. New values of diagonal elements a s and subdiagonal elements b s are

then computed using equations (2.13) and (2.15). This process of computing a s and

3 b . is repeated as long as all the bs become 0 or negligible compared to diagonal

elements as . The pseudocode which performs the QR method is as follows:

U
I
I
I

431

x(i, fk)=0; b(i, k)=u; a(0, k)=0; b(n+1, k)=0; c(0, k)=1; s(0, k) =0;

c(n+1, k)-!; s(n+1, k)=0; x1=0; n=0;

k =0
repeat

for i=1,m
x(i+1, k)= - s(i-1, k) . b(i, k) + c(i-1, k). a(i, k)

r=sqrt{ [b(i, k)] 2+[x(i+1, k)] 2

if r > 0
c(i, k) =x(i+1, k)r3

eles((i, k) =b(i+l, k)/r

c(i, k) =1

s(i, k) =0

end if
w=c(i, k) .x(i+1, k)+s(i, k) -b(i+1, k)I
v=c(i-1, k) .c(i, k) b(i+1, k) + s(i, k) .agi+i, k)
b(i, k+1)=s(i-1, k) w
a(i, k+1)=c(i-1, k) .c(i, k) . w + s(i, k) v I
for j=1,m

u(i, j, k+l) = c(i, k) u(i, j, k)+s(i, k) u(i+1, j, k)
u(i+1, j, k+'I) =-s(i, k) u(i, j, k)+c(i, k) u(i+1, j, k)

end for
end for

k =k +1
until sum of squares of b =0

2.5: POWER METHOD3

Estimation of the DOA's is performed by using the eigenvectors

corresponding to the m - d smallest eigenvalues. It was seen earlier that the

direction vectors corresponding to the d sources are orthogonal to the trueI

eigenvec tors e d +1, e d +2 em . However, in a practical situation, only estimates of3

these eigenvectors are available and thus it is expected that the orthogonality

critcrion does not hold exactly. Instead the projection of these direction vectors on3

i
i 44

the subspace spanned by the estimated eigenvectors are used in potential solution,

i that is the cosine between each of the direction vectors and the estimated
eigenvectors e d+ 1, e d+2. em is expected to be close to zero.

I a*((d)E n 0 i = 1,2,...d

E n = e d+1' e d+2 . e m

The following function is chosen as one possible measure of closeness of an

element of the array manifold to the signal subspace.

PM (0) = a*(O) E nE* n a()(2.18)

and the dominant d peaks over 0 E (-n, n) are the desired estimate of the directions

of arrival.

I
2.6: COMPUTATIONAL MODULES FOR ESPRITI

A detailed flowchart for the computation of the ESPRIT is shown in Figure

2.4. As shown in the flowchart for pipelined arrangement for ESPRIT most of the

i operations are similar to MUSIC algorithm. The design of additional required

computation modules for ESPRIT such as multiplication of matrices and inversion

3 of matrices are in progress.

i

I
U
I

I iI

45I

Estimate R 1

Tridiagonalize R, by Householders trans, I

Eigendecomposition by QRmethod

EEstimate the number of sources di

Obtain the signal subspace 3
EjE,= '] =[el ed]

Compute E* E

xE IE I E|;
Tridiagonalize E* E by Householders Trans.

IFI
Eigendecomposition of E* E usingQR Method

II

I

1 46

I
3 ComputeE= H1 Q! = [1 e il

Partition

3 E1 l
E =

E 2 2

I

Calculate EE

Tridiagonalize E 12E 22 by Householders trans.

II
I Eigendecomposition of E E12 2 using QRmethod

II
I Find the angle of arrival

I
I Figure 2.4: Detailed flowchart of ESPRIT Algorithm

U

I

I Chapter III

HARDWARE IMPLEMENTATIONU
i 31: INTRODUCTION

With the advances in the area of VLSI it is now possible to design special

purpose hardware for the implementation of various real time algorithms. The

I customized hardware has two main advantages as listed below.

iE1) The given algorithm is executed at a high speed.

2) Cost and size of the hardware will be lower than the cost of a general purpose

* computer.

3 These advantages have led many researchers to probe into the possibility of

designing special purpose hardware. The development of special purpose hardware

will need to exploit pipeline, parallel and distributed processing approaches to

achieve high throughput rates. Hence in this section we present the first step in the

development of a dedicated chip set to support MUSIC and ESPRIT algorithm

I which has been explained in previous sections.

I There are many architectures such as systolic array, SIMD Cordic Processors and

3MIMD wnich can be used for parallel implementation. An appropriate structure

which can exploit maximum paralielization to reduce the computation time

3 will be selected for real time implementation for the particular application.

I
I
1 47

!
48

3.2: LITERATURE SEARCH I
Various papers pertaining to parallelization of Householders and QR

algorithms were reviewed. C.F.T. Tang et al (121 and K.J.R. Liu [131 proposed

architecture for complex Householder transformations for triangularization of the

matrix. In their architecture they used single column with the number of processors

equal to the number of columns of the matrix. Each processor performs operation I
on each column. After each iteration the values of each column are fed back to the

same processors. But their architecture is proposed to perform triangularization of

the given matrix whereas we are interested in tridiagonalization of the covariance

matrix. I
QR method for the tridiagonal matrix is implemented by W. Phillips [15]. In

his architecture, rectangular systolic array is used in which each processor performs

single iteration. When the first iteration is performed on the m th row by the k th 3
processor, the second iteration is performed on the (M-i) th row by the (k-i) th

processor and so on. But the disadvantage in this approach is that the number of 3
processors is dependent on the the number of iterations, i.e., if 5 iterations are

required then 5 processors are required. But the exact number of iterations is not 3
known which leads to the uncertainity of the required number of processors. 3

K.J.R.Liu [16] has proposed another kind of approach in which a systolic array 3
arranged in a matrix form is used. The number of processors is equal to the number

of elements of the matrix. During first step, the matrix Q is found. Then new values

of matrix A are then calculated using Q. Convergence for all the elements of the 3
matrix other than the diagonal elements is checked. If all the elements of the matrix

other than the diagonal elements are not equal to zero then the same systolic array 3
I

I
I 49

is used for the next iteration. These iterative computations are used until all the

j elements of the matrix except the diagonal elements converge to zero. The obvious

advantage is that the same set of processors can be used for all the iterations. But the

drawback is that this architecture is proposed for the evaluation of eigenvalues on

the dense matrix. In the next sub-section systolic architecture for the previously

developed parallel algorithms for the computations of covariance matrices,

* householders transformation and QR method is presented.

I
I 3.3: SYSTOLIC ARCHITECTURE FOR FORMATION OF DATA COVARIANCE

MATRIX.I
The parallel computation of the data covariance matrix is performed using

I systolic architecture. As stated earlier the covariance matrix is Hermetian and

computation of lower triangular elements of the covariance matrix is sufficient to

get the information for the entire matrix. Since there are 36 elements in the lower

3 triangular 8 x 8 matrix, systolic architecture will have 36 processors. Here a

triangular arrangement of the systolic array with global routing is considered as

I shown in the Figure 3.1. Each processor is numbered as P(mn) where m is the row

3 number and n is the column number. The sampled data from the ith, sensor is sent

to the ith row and the i th column simultaneously. For example the sampled data

from the 3rd sensor is sent to all the processors in the third row and the third

column. Each processor performs multiplication and addition of two sampled data

I in parallel in all the processors for every clock cycle . Since there are 36 processors, 36

3 multiplications and 36 additions are performed simultaneously. Each processor has

I
I

50U

A/D A/D A/D A/DI

PEI I

PE21 PE2

PE31 P32 PE3

PE1 PE82 PE3PE87 PE88

S 0
do i=1,p
S=S+A.B

A S A end do
S=Sp

B

Figure 3.1: Systolic architecture for computation of covariance matrix

I

*• 51

a memory to store the product of multiplication which is added to the product

I obtained during the next data cycle. Once the operations of multiplication and

addition for all the sampled data in all the processors is performed, the stored data

I in each processor is then divided by the number of samples in all the processors in

parallel. The resulting output are used to form the data covariance matrix Rxx.

E 3.4: SYSTOLIC ARCHITECTURE FOR HOUSEHOLDER TRANSFORMATIONS

n The previously comp'"-ed covariance -matrix is a den.,Z matrix. Given a dense

matrix it needs to be reduced to a tridiagonal matrix using the Householder

transformations. As seen fror the flow chart in Figure 2.3 and equation (2.10) the

* determination of all the d sand the new elements of the columns of the matrix can

be computed in parallel. A systolic architecture is proposed for the computation of

tridiagonal matrix. Thus this algorithm can be mapped on a systolic architecture

with the number of processors equal to m+1, where m is the order of the matrix.

Systolic arrangement for 8 x 8 matrix i' s shown in the Figure 3.2. The columns of

3 the matrix are sent to each processor in a pipelined fashion in reverse order such

that the last element of the column becomes the first element of the column. The

Processor PEI is used to find the w and c required by other processors to find the d.

3 Processors PE2, PE3... PE8 are used to find d, using the value of w and c found in the

first processor. All the d , are evaluated in parallel and are sent to the processor PE9.

3 Processors PE2, PE3... PE8 has the memory to store all the w ,, d s and the elements of

that column of the matrix. The processor PE9 is exclusively used for the

1 determination of v , using d , and w . The v s are then routed back to all the

3 processors. The processors PE2, PE3... PE8 uses w, d and v to find the new values of

the elements of the columns in parallel. At the same time theI
I

" 52

Column 2 P2i

Column 3 PE

Column 4 P ! I

SPE8

Column 8 PE

PE9 i

Figure 3.2,: Sstolic arhitetfo r ouse. holders transformation

I

I 53
first processor is used for the evaluation of 3. The first element of the first column

3 and 3 are the output of the first iteration which are used as input for evaluation of

eigenvalues using QR method. The counter is used to set the number of iterations

to m-2. For m-2 times, the intermediate results are used in feedback loop and the

same set of processors are used repeatedly. The feedback loop has a FIFO memory to

temporally store all the elements of the column until operations on previous

iteration are completed. For the first iteration operations on 8 x 8 matrix are

performed hence all the processors are utilized. For the second iteration operation

on 7 x 7 matrix are performed. Now the first column of the matrix is already

3 computed; therefore new elements of the second column are fed back to PE1,

elements of the 't"hIrd C ul iiia are fed back to PE2 and so on. Thus for the second

I iteration PE8 does not have any column to work on and is used only for routing

purposes. All other processors perform same operation as in the first iteration, but

the elements of each column are reduced by one element. Thus for every new

iteration the columns and the elements of the columns goes on reducing. Various

operations performed by different processors are given in Figure 3.3.

3.5: SYSTOLIC ARCHITECTURE FOR QR METHOD

I The tridiagonal matrix as obtained from the Householders transformations is

reduced to a diagonal matrix using the QR method as discussed earlier. The QR

3algorithm as explained in the pseudocode is described again in the form of parallel

flowchart of Figure 3.4. The systolic architecture uses 2*(m+1) processors where 'm'

is the number of rows or columns of the tridiagonal matrix. Systolic architecture

3 for 8 x 8 matrix is shown in Figure 3.5. Each column has (m+1) processors. Two

kinds of processors are used. The processors PE1 and PE2 are used to compute the

3 eigenvalues and all the other processors are used to find the eigenvectors of the

I

543

Processor PEI 3Coil 3: I V

v C v dC v

i= 1 d=O
s=O do 1 = 8)i+1)- I
do 1=8,i+ ,-i d=d+r(1)*v(l I)

'v(1-1)=r(1) end do
s = s + V(1- 1)*V(1- 1) do 1=i?,

end dodo18il-
p= sqrt(s) r(21)=r(11)-v()v-v (1)v
v(i)=r(i+1) + 3end do
c= s+ r(i+1).p
i=i+1 Processors PE2,PE3,,,PE8

IF IF

A pII

p= Processor PE9

do L = 8,i+1,-I
p = p+v(L-l)*r(L)

end do
p=p/2(c*c)3
do L 8,i+1,-i
v(L- 1) = d-v(L- 1)*p
end do

F
Figure 3,3: Operation performed by different processors.

55
II Initialize various

parameters

IV
Repeat

Cobegin cos and sin coend

Cobegin w and v coend
Cobegin a and b coend

Compute iteratively for all columns

SCompute all eigenvectors in

Iparallel

I
i U() U(2) U(8)

I
Untill

I T converges to a

I Fdiagonal matrix

I Figure 3.4: Parallel Flowchart for QR algorithm

Diagonal
elements

elements

p I I 1

r (

... _.._._.._...._.. I

Figure 3.5: Systolic architecture for QR method

1
i 57

tridiagonal matrix. The diagonal and subdiagonal elements of the tridiagonal matrix

from the Householders transformation is pipelined into the first processor PE1

which performs the first iteration. The new values of sine and cosine of rotation a,

i and b s are computed. The values of sine and cosine are sent in pipelined fashion to

all processors in that column. These processors PE11, PE21 PE81 find the

eigenvector of the tridiagonal matrix. The new values of a , and b s computed in the

first processor are sent to the processor PE2 which performs the second iteration to

find the eigenvalue, performs the same operation as performed by PE1. The

processors PE12, PE22...PE82 find the eigenvectors for the second iteration. The

processor PE2 also performs the test for the convergence. If the sum of squares of

the subdiagonal elements is not nearly equal to zero then the control will go into

j the feedback loop to repeat the computations. This processor is repeated as long as

only the diagonal elements are left which form the eigenvalues. Various operations

performed by the processor are given in Figure 3.6.

I
3.6: HARDWARE IMPLEMENTATION OF POWER METHODU

Once the eigenvectors have been computed, the value of eigenvector are

I utilized to calculate the power as given by equation given in chapter II and is

i repeated below:

1I P(0) = a*() E nE* n a(O)

I
As seen from this equation the evaluation of a*(e) E nE* n a(O) requires squaring of

the product of rowvect',, :4 t(O) and thp Pigenvo- - ,r m;trn' E -encP the productIn
I

58I
Processor PEL, PE2

a! new
[1 1al x2 =-sl.b2 +cl al

~ r = sqrt(x2.x2+b2.b2)
b2 new if x>O0

bi c I = x2/r
s I = b2/r

C I Si else
C1 =1I
si = 0

w = cl.x2+sl.b2
v = cO.cl.b2 +sl.a2I
al = cO.cl.w+ sixv
bI = sl.w

Processors PE1IPE 12 PE8I,PE82I

cC1c sls

I IFal = clxI = sl.aO3
plI cl.aO- sl.pO

u IIs

Figue 36: Oeraion erfrmedby rocesor

I
* 59

of a(O) and E , is evaluated and then the product obtained is squared and

accumulated for all the values in the array manifold. The hardware design is

shown in the Figure 3.7. It consists of a set of 8 multipliers to find the product of a(e)

I and E n in parallel. The product obtained is then summed using adders. The real and

3 imaginary and are squared and added again. The evaluation E*n a(8) is similar to

the evaluation of a*(O) E n and hence the product of a*(O) E n is squared and added.

The angle of arrival is thus calculated for different values of the angle. The value of

P , (0) is different for different angle. TIhe angle for which P m (0) is maximum is

I the angle of arrival giving the angle of arrival.

3.7: HARDWARE BLOCK DIAGRAM OF MUSIC AND ESPRIT ALGORITHMS

I
The hardware block diagram foi the MUSIC Algorithm is shown in Figure

1 3.8. As seen in this Figure, the data collected from the sensors is utilized to form the

covariance matrix. The eigendecomposition is performed using Householders

transformation and QR method. The Eigenvalues are used to find the number of

3 sources and finally using the eigenvectors in Power method we find the angle of

arrival. The Hardware block diagram for ESPRIT algorithm is shown in Figure 3.9.

IN It is similar to the MUSIC algorithm but instead of power method of MUSIC some

more computations are performed to evaluate the angle of arrival in case of FSPRIT.

I
I
I
I
I

a 60 U

I

+ + + +I I

+ +I
I
I
I
I
Ia +jbI

a2+ b 2

Accumulate for I
+ every angle+I

Pm(9)

Comparator to find peak I
of Pm()

Angle of arrival I

Figure 3.7: Flowchart for power method I

I ISensorK-po Covariance HouseholdersQRMto 0

Power Direction Angle of arrival and
M ethod kof number of sources

arrival

Figure 3.8: Hardware block diagram for MUSIC algorithm

I
I
h
I
I
I

I
I

I

I

Sensor Covariance Householders QR Method
Matrix transformation

I

Estimate the Decompose 2O-~ number of
sou rces E = (e , ...) I

I

transeolrmaino QR method for of matrix
Ernfr aino Exv E into 4.4

Xw Matrix

I

@ _I
Householder & QR Angle of arrival 1
method

Figure 3.9: Hardware block diagram of ESPRIT algorithm.

I
U

Chapter IV

THE CORDIC PROCESSOR APPROACH

i4.1: INTRODUCTION

The COORDINATE ROTATION DIGITAL COMPUTER (CORDIC)

Itechnique introduced by Voider [17] is highly suitable for the efficient

computation of elementary functions like multiplication, division,

Itrigonometric functions, logarithms, exponentials, square root and vector

rotation. This technique has been proposed by number of researchers [17-251 for

real time digital signal processing applications. Basically, the CORDIC algorithm

Iconsists of a set of iterative plane rotations in a linear, circular or hyperbolic

coordinate system, depending on which function is to be calculated. The only

operations required for the above functions are shifting, adding, subtracting and

the use of look up tables as described by Voider [171. In terms of hardware

complexity, CORDIC processing elements are quite simple and consume less

chip area. Here we present an alternate method for the computation of

eigendecomposition on an array of CORDIC processors. But first the operating

I principles of the CORDIC processors are described.

4.2: THE CORDIC ALGORITHM:

I Consider a plane coordinate system where the radius R and the angle O of a

vector P(x,y) as defined by Walther [181 and Ahmed [231

SR= x2 +my 2 (4.1)

=I tan1 (yTm /x) (4.2)

nfii

63

I
64

and m = I for circular coordinate systems,

m =0 for linear coordinate systems, i
m = -1 for hyperbolic coordinate systems.

Note that for m = -1, Equation (4.2) defines a complex quantity, which can be

simplified by rewriting Equation (4.2) in terms of hyperbolic trigonometric

functions [18]. I
After one rotation, the new vector Pi+j = (xi+,yi+l), as shown in Figure 4.1

obtained from Pi = (xi,y i) can be expressed as i

xi+ 1 = xi - m i i Yi (4.3) i
and

Yi+1 = Y, + i 8 xi (4.4) I
where,

i- +1 for counter clockwise direction of rotation and I
+i= -1 for clockwise direction of rotation. a

6i= Integral power of the machine radix given by

2-(i-2) where 'i' is the iteration number of the current CORDIC iteration.

,n = Parameter for thE coordinate system.

After 'n' iterations, the new radial and angular components of the vector P are i
given by

I
I
I

I
I 65

I 1+. -. - - -)-- -2- -2Xi P(XY -Original
I ---------------

vector

I R+1

Y - - - - - - L i = -

I

X+I x X i-I

Figure 4.1: Original vector P and the same vector after
rotation by ± a [17].

On = 00 + a (4.5)

I and

Rn = R0 * K (4.6)

i where

ac and K are given by the following relations [231

n-I

i=0

nI

IX(j/ F) tan'(8Ji4.7
=0

In-I

K=IJK= M (4.8)
=0 i=0

where,

I
66 3

i =(1/-) tan-'(1- 8d

and
Ki = 1+ m 82

For n = 24 and m=l, the value of K will be 1.646760255

A third variable 'Z' is provided to keep track of the amount of the angle

variations; I
Zi+I = Zi + a1 (4.9)

Solving the set of difference Equations (4.3), (4.4), and (4.9), for 'n' iterations [18]

gives I
xn = K {x0 cos(a F-) + y0ji-m sin(ah-m) (4.10)

Yn = K {-xo/f- sin(ctrf-m) + yo cos(afi'-m)} (4.11) I
Zn = Zo + aC (4.12)

These relations are summarized in Figure 4.2. 3
The scale factor K which is inadvertently generated by the CORDIC cycles is I

not useful and is unwanted at the output. This K can be normalized to unity as

suggested by many authors. It was suggested by Haviland and Tuszynski [19] to

insert scaling cycles into the CORDIC iteration which scale the magnitude of the 3
vector being rotated by the 8i used in the CORDIC iteration preceeding the current

iteration. For 'n' CORDIC iterations, approximately n/2 scaling cycles are needed I
in order to cause the scale factors to converge to unity, thus imposing

I

67

x K1 (xcosz-ysinz) X X

Y Y K1(CS+~n)Y 0
zZ 0 Z Zz-tafn-l(y/x]

Circular m=1, Circular m=1,

z tends to 0 y tends to 0

Y ----- >- + xz Y Y 0Z 0 z z-Y/x

Linear m=O, Linear m=O

z tends to 0 y tends to 0

Y Y X z(ycoslz+xsirthz) Y 0 (
Z 0 z z-t&r-lC:/x)

Hyperbolic Hyperbolic

m=-1, z tends to 0 m=-1, y tends to 0

Figure 4.2: Input output functions for CORDIC modes [181

a speed penalty. It has also been suggested by Ahmed, Ang and Morf [20] to

combine a scaling cycle with the CORDIC iteration preceding the current

iteration. This procedure overcomes the speed penalty, but at the expense of

chip area. Lange et al [211 suggested the implementation of the normalization

68

factor for K together with the floating point postprocessing at the output. This

normalization factor introduces an acceptable relative error of 2- 16.

4.3: CORDIC FUNCTIONS AND ACCURACY: i

The value 'n' in the above expressions gives the number of CORDIC

iterations per operation. This is set by the word length or the number of bits in

the inputs x and y, which directly gives the number of iterations. The number

of bits is also an index of the CORDIC operation, and accordingly, the number of

bits may be chosen for a required accuracy. However, there is a upper limit

constraint on having more number of bits and thus more number of iterations

since it results in slower operation and consumes more chip area. Hence, there

is a trade-off in the selection of word length. The rotations are performed I
iteratively in many small steps rather than in one single step or one rotation

because the sequence of angles (a .) are so chosen that i

5i= tan (aIim) / F = 2-

is an integral power of the machine radix (which is 2 in our case since we arei

using binary number representation). The multiplication by 5i in Equations

(4.3) and (4.4) may therefore be implemented as a shift operation, one shift per

iteration. Note that, for every iteration, we get one bit of the final answer.

Hence, we neither require a multiplication facility nor evaluate sines and

cosines of arbitrary intermediate angles. Figure 4.2. illustrates two special cases:

1) y is forced to zero: Yn = 0

2) z is forced to zero: Zn = 0

These two cases generate many elementary functions. Whether yn or zn is forced

to zero can be taken care of by the proper choice of y or the direction of rotation.

I

69

The identities given in the foot note are used to simplify the above results. It

can be seen that by proper choice of the initial values the following functions

can be obtained or generated [181.

X*Z, y/x,

jsin z, cos z,

sinh z, cosh z,

I tanl(y/x), tanh-l(y/x).

tan z = sin z / cos z

Itanh z = sinh z / cosh z

I exp.z = sinh z = cosh z

logn w = 2tanh-1 [y/xl

I where x=w+l and y=w-1

I AN = x2 -YI

I where x=w+1/4 and y=w-1/4

Foot note: Mathematical identi ies:

Let i =,i-

z = lim i/'-m sin(zF) I1

m --0

z = lir l/,/m tan- (rm 1 2
M---40

sinh z -i sin(i z) 13

cosh z =cos(i z) 14

tanh z =-i tan -1 (i z) 15

I
70

4.4: THE CORDIC ITERATION:

In a CORDIC iteration, the new value of the components x and y of any I
vector P is obtained by adding or subtracting a shifted value of one component

to the other. The components are shifted by (i-2) bits to the right, where i is the

iteration number, for every iteration and then cross addition or subtraction is

performed. These iterations are called microrotations, and every microrotation

produces one 'bit' of the answer. Rewriting Equations (4.3) and (4.4), we have,

Xi+ 1 = x .- . -2) v. (4.13) I
-(i-2) (4.14)

Yi+1 Y1 + i x. (414

It can be seen that yj+j is obtained by adding a shifted value of xi to yi, and H
similarly, xi+ 1 is obtained by adding a shifted value of y, to x.

By restricting the angular increment ot to

ati = tan-I 2-(i-2)

or in general,

CC =m 1 /2 tan - I (m 1/2 2 (i))

II

the right hand side of Equations (4.13) and (4.14) can be obtained. In CORDIC, the

angles are represented as binary fractions of a half revolution, with the negative

angles represented by 2's complements [22]. The angle for the first microrotation

is taken to be 900. To satisfy a1 = 900, and cY = +1, the condition is I

-180<0 <+180,

which is taken care of by the representation as shown in Figure 4.3.

I

I
* 71

I

900

0.10

I 1800 00

S1.00 0.00

I -450 or 3150

1350 or 225

-90 or 2700

1 1.10

Figure 4.3: Binary representation of angles in CORDIC [22]

I

4.5: THE ANGLE AND ROTATION COMPUTING SEQUENCE

The CORDIC operation is explained by an example and is illustrated in

Tables 4.1 and 4.2. Table 4.1 shows how the angle is computed nd Table 4.2

shows how the rotation is performed. The first rows of the Tables show the

initial values of the X,Y and Z registers. The X and Y registers have the matrix

elements to be rotated as the initial values. In this example, the word length of

the three registers are chosen to be 8 bits with the MSB being the sign bit.

I
I
I

I
72

4.5.1: Angle computation:

In Table 4.1, the initial value of Z is set to zero. The sign bit of Yi is used as I
the reference to determine the operation sign (whether addition or subtraction)

to obtain Yi1 l, Xi+l& Zi~j where i is the index of the CORDIC iteration or

microrotation as shown below.

[1] Sign bit of Yi is '0' which is 'positive'

Xi+ 1 = Xi + shifted value of Yi (addition)

Yi+1 = Yi - shifted value of Xi (subtraction)

Zi+1 = Zi + o~i (addition)

[21 Sign bit of Yi is '1' which is 'negative'

Xi+ 1 - Xi - shifted value of Yi (subtraction)

Yi+l = Yi + shifted value of Xi (addition)

Zi 1 = Z i - o i (subtraction)

I
For example,the sign bit of Y3 is 0 indicating positive. The operation sign for

Z and X is '+', that is the value of Z4 is obtained by 'adding' the value of a3 to Z3

and the value of X4 is obtained by adding the value of X3 to the shifted value of

Y3 . The operation sign for Y is the negative of the sign bit and thus, Y4 is

obtained by subtracting the shifted value of X3 from Y3 facilitating Y to converge I
to zero.

As mentioned earlier, fhe angle a 1 is chosen to be 900 After the first

microrotation, the new value of X is the previous value of Y and the new value I
I

I
I 73

Y is the negative of the previous value of X which conforms to Equation (4.10).

I The second miciorotation is performed by an angle tan 41 (2 -(i-2)) which is tan -1 (1)

since i=2 and thus there are no shifts but only cross addition or subtraction. The

number of shifts is given by the exponents of 2 which is the argument of the

i arctan as seen in the second column of the Table. Since the angle steps are given

by the arctan whose arguments are controlled by the iteration number, for any

i given microrotation, the angle is fixed irrespective of the input values. Thus the

angle steps need not be calculated every time but instead, the binary CORDIC

I representation as shown in Figure 4.3 of the angle steps are stored in the form of

look-up tables and recalled at the bezig ing... " f cv.cry iferation. Since seven i,1

are used to represent X and Y, seven CORDIC iterations have to be performed for

one operation. At the end of seven iterations, the contents of the Z register gives

the original angular argument of the co-ordinate components Yjand Xi.In our

-] application, only the value of the angle is necessary and thus the X and Y outputs

are ignored. This computed angle is fed as the Z input as shown in Figure 4.4 for

the rotation computation described below.

I
I
I
I
I
I
I
I

I

74 I
TABLE 4.1

Sequence of steps for computing angle

Angle step Shift terms Z-Register Y-Register X-Register Index # i I
0.0000000 0.0101110 1.1000101 1

90 tan +0.1000000 -1.1000101 +0.0101110

0.1000000 0.0111011 0.0101110 2

45 tan 1 +0.0100000 -0.0101110 +0.0111011

0.1100000 0.0001101 0.1101001 3 3
26.56 tal 2 +0.0010010 -0.0110100 +0.0000110

0.1110010 1.1011001 0.1101111 4
14.04 tan 2 -0.0001001 +0.0011011 -1.1110110

0.1101001 1.1110100 0.1111001 5

7.125 tad 1 2 -0.0000101 +0.0001111 -1.1111110

0.1100100 0.0000011 0.1111011 6

3.576 tan 2 +0.0000010 -0.0000111 +0.0000000

0.1100110 1.1111100 0.1111011 7

1.7899 tan 2 -0.0000001 +0.0000011 -1.1111111

148.18 0.1100101 1.1111111 0.1111100 8 I
=I -- = 0 = R I _II

The index # of the x, y and z register values are indicated 3
in the last column of the table. I

I
I
I
i

I

I 75
Angle Processor Rotation Processor

a x(Omit) a acos0 - b sinO

b Y{(Jm m it) b Y-a sin@ +b cosO

C + tan' (b/a)= 0
(c=O)

m=l,b - 0 m=1,0 -oi 0I
Figure 4.4: Calculation of angle 0, by which the two vectors

'a' and 'b' are rotated.

i
4.5.2: Rotation computation:

The sequence of steps are shown in Table 4.2. Here, the sign bit of Zk is ised

as the reference to determine the operation sign as shown below.

[I] Sign bit of Z, is '0' which is 'positive'

Xi+1 = Xi - shifted value of Yi (subtraction)

Ii~l -- Yi + shifted value of X, (addition)

Zi. = -- ici (subtraction)

[21 Sign bit of Z is '1' which is 'negative'

+ Xi + shifted value of Y, (addition)

Y Y - shifted value of X. (subtraction)

Zi.1 zi + U. (addifin)

5 The operation sigi, for Y is the sign indicated by the sign bit of Z and the

operatio)n sign of X and Z is the negitive of the sign bit of Z. After 7 iterations,I
I

I
76

the value of Z is zero, meaning that the rotation has been performed by the

complete angle 0 until 0 = 0 + ax = 0. Similar steps of the angles cc's are iis-d aq

in the angle module. The contents of the X and Y registers after 7 microrotations

are the rotated values of the inputs to the X and Y, by the angle given by the Z I
register. The Z output is ignored. 3

TABLE 4.2

Sequence of steps for computing rotation

Angle step Shift terms Z-Register Y-Register X-register Index # i

0 = 142.18 0.1100101 0.0101110 1.1000101 1

90 tan-1 (1,) -0.1000000 +1.1000101 -0.0101110

0.0100101 1.1000101 1.1010010 2

45 tan-l(1) -0.0100000 +1.1010010 -1.1000101

0.0000101 1.0010111 0.0001101 3

26.56 tan- (21) -0.0010010 +0.0000110 -1.1001011

1.1110011 1.0011101 0.1000010 4o .- 2 ____ ___ ____ _ __I

4.04 tan (2) +0.0001001 -0.0010000 +1.1100111

o 1.1111100 1.0001101 0.0101001 5 I
7.125 tar -1 (2) +0.0000101 -0.0000101 +1.1110001

0.0000001 1.0001000 0.0011010 6

3.576 tan- (2) -0.0000010 +0.0000001 -1.1111000

1.1111111 1.0001001 0.0100010 7 3o-1 -5

1.7899 tan (2) +0.0000001 -0.0000001 +1.1111100

0 0.0000000 1.0001000 0.0011110 8
=0=0 II

The index f i of the x, y and z register values are I

indicated in the last column of the table

I
I

77

Thus an operation takes 'T iterations, i being the word length and it can be

seen that in each iteration only shifting and addition / subtraction are

performed.

4.6: THE QR ALGORITHM

The QR algorithm has already been described in chapter II. This requires the

computation of the following equation, rewritten for quick reference.

T 'T Q 'T 'T TQI QITl= QQ_..QT TkQ...QQI

k+1 Tn- T-*" kl1* n-2 n

The algorithm is explained using an example of a 5 X 5 symmetric, tridiagonal

matrix T1

4.6.1: Computation of eigenvalues:

Eigenvalues are computed in accordance with the above equation and k

iterations will be performed. One such iteration is shown in the following

example.

2 1 0 0 0 cosO sinO 0 0 0

1 2 1 0 0 -sinO cosO 0 0 0

T 1= 0 1 2 1 0 Q1T= 0 0 1 0 0

0 0 1 2 1 0 0 0 1 0

0 0 0 1 2 0 0 0 0 1

- I201= tanl 2 = 26.5 65°

I
78 3

0 is calculated based on the Given's rotation. The arguments for the I
arctan are obtained from the first column of the window selected for

the QT operation.

I
0.8944 0.4472 0 0 0- 2.236 1.7888 0.4472 0 0

-0.4472 0.8944 0 0 0 0 1.34166 0.8944 0 0

QT 0 0 1 0 0 Q0Ti= 0 1 2 1 0

L 0 001 L 0 0 1 21

I
tan1 1 o

1.34166366988

1 0 0 0 0- 2.236 1.7888 0.4472 0 0

0 0.8018 0.5976 0 0 0 1.6733 1.9123 0.5976 0T T T
Q2 = 0 -0.5976 0.8018 0 0 QzQTl= 0 0 1.0691 0.8018 0

0 0 1 0 0 0 1 2 1

L 0 0 0 L 0 0 0 1 2

Observe that the matrix T, is being transformed step by step to a upper i
T

triangular matrix through row operations by the orthogonal matrices Q .

0 I= a=1 1 43.088 i

3 1.0691-

Now the first two columns are free and we can perform the column i

operation on the new T, by the matrix Q. I
I
I

I
* 79

0.8944 -0.4472 0 0 0 2.8 0.6 0.4472 0 0-
[0.4472 0.8944 0 0 0 0.7483 1.5 1,9124 0.5976 0

Ql= 0 0 1.0691 0.8018 0
0 0 0 1 0 0 0 1 2 1
0 0 1 L 0 0 0 1 2

I
1 10 0 0 0- 2.8 0.6 0.4472 0 0]

01 0 0 0 0.483 1.5 1.9124 0.5976 0
S0 0 0.73 03 0.6831 0 Q3Q QTQI= 0 0 1.4639 1.9518 0.6831

0 0 -0.6831 0.7303 0 0 0 0 0.9135 0.7303
-00 0 0 1 L 0 0 0 1 21I

04= tan- 09135 47.5880

4
2.8 0.7483 0 0 0 1

Q Q0.7483 2.345 0.637 0.5976 0

Q3QQ, T IQ Q 0 0.8748 1.1737 1.9518 0.68312
0 0 0 0.9135 0.73031

L 0 0 0 1 2 -

I () 00 0 0

p010 0 0
QT 001 0 0

0 0 0 0.6744 0.7383
-0 0 0 -0.73832 0.67445

2.8 0.7483 0 0 01

0.7483 2.3455 0637 0.5976 0
T T T T 0 0.8748 1.1737 1.9518 0.6831I Q4QIQ2QT 1 Q1 Q,

L 0 0 1.35443 1,9692
L 0 0.8097 J

I
lir

I
80

[2.8 0.7483 0 0 0 1
0.7483 2.3455 0.8748 0 0 1

Q4Q3Q2QTIQQ2Q 3 _- 0 0.8748 2.1905 0.6236 0.6831

0 0 0.9252 0.9891 1.9692 I
L 0 0 0 0 0.8097

I
2.8 0.7483 0 0 0

0.7483 2.3455 0.874 0 0 1= TQ TT QIQ

TT=Q4Q3Q2Q TIQlQ2 Q 3 Q4 = 0 0.8748 2.1905 0.925 0
0 0 0.925 2.121 0.598

L o 0 0 0.598 0.5461

!
The above matrix is the result of one QR iteration. Observe that it is

symmetric and tridiagonal. Tk 1 will always be symmetrical and tridiagonal

as long as the original matrix T1 is symmetric and tridiagonal. When more I
iterations are carried out, the off-diagonal entries converge to zero resulting 3
in a diagonal matrix. The diagonal elements will be the eigenvalues of the

original matrix as show'rn below. 3
1 0 0 0 0

0 X2 0 0 0

A 0 0 3 0 0

0 00 ' 01

0 0 0 0 J

I
I
I

Im

4.6.2: Computation of eigenvectors:

3 The product of all the QT matrices which were used for the eigenvalue

computation, gives the eigenvectors of the matrix T. Instead of performing

i matrix multiplications which is both time and area consuming, all the QT

i operations are performed starting with an identity matrix, thus obtaining the

same results. One iteration of these computations are shown as an example

below.

F0 .8 944 0.4472 0 0 01 0 0 00

-0.4472 0.8944 0 0 0 0 0.8018 0.5796 0 0
"Q1I (1 0 0 QT= 0 -0.5796 08018 0 0

0 0 0 100 0 0 10
-U() 0 0 01 I-0 0 0 0 1 -

t - 0.8944 0.4472 0 001 [10 0 0 01
-0.3585 0.7171 0.5976 0 0 0 1 0 0 0

T0.2672 -0.5345 0.8018 0 0 0 0 0 0.7303 0.6831 ()IQ2 Q1I Q3
0.270 1 0 0 0 -0.6831 0.7303 0

(0 L 0 0 0 0

* 0.8944 0.4472 0 0 0
-0.3585 0.7171 0.5796 0 0

QT QT ' = 0.1952 -0.3903 0.5S56 0.6S31 0

-0.1826 0.3651 0.5477 0.7303 0

L 0 0 0 0 1I
0 0 (0 0 1

i o 0 0 0

Q 0 I 0 0
0 0 0 0.6744 0.7383

0 0 -0.7383 0.6744 J

l
l

I
82 1

S0.8944 0.4472 0 0 0

-0.3585 0.7171 0.5976 0 0
= QTQQT QTI0= .1952 0.3903 0.5856 0.6831 0

-0.1231 0.2463 0.2463 0.4926 0.7383 j
L 0.1348 -0.2696 -0.4044 -0.5392 0.6744

I
X is the eigenvector matrix with the j th column being the eigenvector 3

corresponding to the eigenvalue X

I

4.7: STEP BY STEP SUB-ARRAY SELECTION AND PROCESSING I
As explained in the previous sections the eigendecomposition by the QR 3

method is performed as a sequence of row operations QiT and column operations

Qj, where i = 1,2,3., (m-1) and m is the order of the input matrix. Since we

have eight sensors, the input matrix is of the order eight and there are seven row

operations and seven column operations. Since the original matrix has been I
transformed to a tridiagonal form, we have to process at most three elements in

every row or column. Each QjT operation is performed on two rows i and (i+1).

Every Qj operation is done on two columns j and (j+l). Thus any QjT or Q3

operation produces at most six new matrix entries and we need to process only

these six elements. For the row operation this is achieved by selecting a 2 X 3 I
window at the top left of the matrix as shown in Figure 4.5. For every

consecutive operation, we slide down the window diagonally by one row and

one column until the end of the matrix is reached. The last row operation 3
changes only four elements. I

I

83

Similarly, for the column operations, we select a 3 X 2 window and slide it

down diagonally until the end of the matrix is reached. This performs QI to Qm

operations and is shown in Figure 4.6. Note that the Q1 operation creates only

four new elements and thus only two of the three CORDIC processors do the

operation and the third processor is fed with zeros as inputs.

For a given i, both QiT and Qi use the same angles. Thus if all the row

operations are carried out first and then followed by the column operations, all the

angles in one iteration have to be stored and have to be used in the right order

again. To circumvent this drawback, the row and column operations are

interleaved. Another advantage of interleaving is that when the angle processor

is calculating Oi for the QiT operation the rotation processors simultaneously

perform the Qi-2 operation as explained in the next section.

a1 b, 0 :0 0 0 0 01 F67 T 0 0 0 0 0
L - - -- - I I

0 -- --

Ibl _6-, 0 0 0 b 0 0 0
2 a3 3: 2 a3 :,,b3:,o: b 40 0 0 0 0 b 3 :1 0' 0 0

00 b4a0 0 0 0 b

t93 ---- 0, :b5 4 : 0 0
------ ----- I-0 0 0 ,b a b 0 0 0 0 ,,b 5 :a ::b O - 0L.... I I

L6 * . I 6 - I

..I .- - ..)

0 00000 a 0 0 0 0 00 ,b7, a

Figure 4.5: Selection of windows for the Figure 4.6: Selection of windows for the

operation for eigenvalues QI operation for eigenvalues

I
84 5

I
"* * *[0 0 0 0 0 3
:0 * * * 0 0 0 0L -------

I

0 0 --:*- 0 0 0

0 0 b3 a 4 b4 0 0 0 I
0 0 0 b 4 a5 b5 0 0

0 0 0 0 bs a6 b6 0

0 0 0 0 0 b6 a 7 b 7 3
00 0 0 0 0 b7 a8

Figure 4.7: First two columns ready for column operation 5
Note: ',' indicates that those elements have been rotated and their values

are different from the origi1.',1 matrix. m

I
After Q 1 T and Q 2T have been performed, the first two columns of the I

resulting matrix are free as shown in Figure 4.7 and are available for the Q,

operation. Meanwhile we calculate the angle for Q 3 T by computing tan -1 (b3 /a 3). m

This process is continued and when all the QT operations are completed, a new

iteration is performed starting from row I or, a new matrix is loaded row by row

if the required number of 'x' iterations are already performed on the previous 5
matrix. Since the loading of the matrices is done row by row, the Q6 and Q,7

operation on the previous matrix can be performed without being affected by the m

new iteration or new matrix. After Q7, we start with Q1 on the next iteration. 3
tI

I

I 85

This is explained with the flowchart shown in Figure 4.11.

The eigenvectors are computed by the product of all the QiT. To a-void

matrix multiplications, we start with an identity matrix I and perform only the

Q 3 T operations on 1. To reduce the number of processors for the eigenvector

computation by half, the row operations are done in two parts. 2 X 4 windows

are selected separately for the left half and the right half of the rows as shown in

Figure 4.8. Though we start with only a few non-zero elements in the matrix, we

need m/2 = 4 processors because every step and every iteration produces new

I entries in the resulting matrix.

I Left RightI "
1 00OO000

: 1 0 0:0 0 0 0::
-L-------- -... . . .

. I
---- ------------- I

L: 0 ---0 - --- -- ------------ ------

--------------------------- ------------- ----
r,3 I -- -0--- -

----0-0--- r- ---------
fl--- i I---------------------------- -----------

n'------------------------ ---------- 6--- U4

0 :-r "1 -.-

1:0 0 0 PIj"'p 0P-- 1 0::I
I Ii:0 0 0 0:: 0 0 0 _1~

Figure 4.8: Selection of windows for the
t

Q, operation on the identity matrix for

the eigenvectors

I
""I' ',r ?-

Io ::

I
86 I

4.8: DESCRIPTION OF THE PARALLEL HARDWARE BLOCK DIAGRAM

A parallel CORDIC block organization is shown in Figure 4.9. Eigenvalues I
and eigenvectors are computed in parallel by different sets of processors. The

optimized architecture consists of eight processors. The processor P0 computes

the angle 0i. The processors P 1, P2 and P3 compute the QiT and Qi-2 operations for 3
the eigenvalues in alternate time steps. Only four processors are required to

compute eigenvalues irrespective of the dimension of the matrix as long as m>4. I
In the eigenvector module, processors P4 to P7 perform the QjT operation

starting from the identity matrix. The number of CORDIC processors for

eigenvector computation equals m/2. Thus, the total number of processors
m

required to compute both eigenvalues and eigenvectors are (4 +

The input matrix is fed row wise into the memory. The relevant windows I
are selected with the help of a controller which contains a simple code. The 2 X 3 3
and 3 X 2 windows are selected alternately and passed to the input registers.

Three parallel operations performed by processors P1 to P8 are demonstrated by 5
the following Example.

Example:

Assume that Q1 T, Q 2T, Q 3Tand Q1 operations have been performed. The next

operation that can be performed is Q2without affecting the row operations and at

this instant the second and third columns will be available to perform Q2 3
operational shown in Figure 4.10

[",]To perform the Q2 operation, we select a 3 X 2 window from the second U
and third columns. This window is passed to the processors P1 to P3 . These

processors contain the angle 02 received from the output of a two stage FIFO

I

I

I r

CONTROLLER

~Eigenvalue

Block,] MEMORY MATRIXBlc

SI!

IL_ OUTPUT REGISTER

Ii INPUT REGISTER

p-- PITII

S -OUTPUT REGISTER

I:

I IocEigenvector

I Figure 4.9: Parallel hardware block diagram of a CORDIC
block for the computation of QR iterations

I

connected to P0.

121 In the eigenvalue computation mode, the fourth 2 X 3 window is being n

selected and the first column of this window (which are the elements b4 and

a4) is sent to P0 to compute 04.

[3]At the same time, P4 to P7 contain the third window (right half as shown 5
in Figure 4.7) and contain the angle 03 received from the angle processor

through a one stage FIFO. It can be seen that the operations that are I
performed in parallel during this time step are

[1] Angle computation -- 04.

[21 Q2 on columns 2 and 3 in parallel for eigenvalues performed by P1 to P3. 1
[3] Q3 Ton rows 3 and 4 (right half) in parallel for eigenvectors performed by

P4 to P7 1r
0 0 * * * 0 0 0

00 0 * 0 0

0 0 0 b4 as b5 0 0

0 0 0 0 b5 a 6 b 6 0

0 0 0 0 0 b6 a b I0 0 0 0 0 0 b 7 a 8 I
Figure 4.10: Shows the window selected for the row operation

Q4 while the columns 2 and 3 are free for Q2 operation.

Note: * indicates the elemencs which have been rotated and updated. I

U
I

89

Now, we have QITQ 2TQ 3TTQIQ 2 as the new matrix and the angle 04 is

passed to processors PI to P 3 and P4 to P7 , where Q 4T will be performed

simultaneously. The operations that are performed in parallel during this time

step are

I1 Q4Ton rows 4 and 5 performed by P1 to P3.

121 Q 4 T on rows 4 and 5 (left half) performed by P 4 to P7 -

The sequence of cperations are explained in the next section.

4.9: PRECEDENCE AND PARALLELISM OF THE COMPUTATIONS

The parallel implementation of the QR decomposition on the CORDIC

processors is described with the aid of the flowchart of Figure 4.11. Since

eigenvalues and eigenvectors can be computed utilizing the same rotation angle

0, they are shown separately with two parallel paths.

4.9.1: Eigenvalue computation

At the beginning of the computation, the T matrix memory is initialized to

0. Next, the first row of the input T matrix is loaded into the memory. The

counters are initialized to i=l, j=m-2 and k=l. Then a 3 X 2 window on columns

j and j+l which are 6 and 7 is selected and passed to the processors P1 to P3 for the

Q6 operation. Since, as of now, only one row has been loaded into the memory,

the rest of the ruws are still zeros and this Q6 operation does not produce any

change in the matrix. After the window has been passed, the next row of T is

loaded into the memory. Now we select a 2 X 3 window on T and pass the first

column of the window to the processor P0 for computing 01. Next, P0 will be

computing 01 while P1 to P3 will be computing Q6. The angle for this Q 6 operation

is indeterminate since it is just the start of the operation and also

1
90 3

(START)

Initialize I Matrix Initialize T Matrix
Memory to 0 Memory to 0v v|

Load 1-st row of I [Load 1-st row ofT __

input into memory input into memory I

.La41Lt counters Initialize counters
i=l, L=m-1 i=1, j__m-2 I

k=l k=]

Select left 2 X 4 window [Select 3 X 2 window
fromIindicated by[from T indicated by jfl'm Iidicaed b i I , ,pass toPj-P 3 -I

LanetrwLoad next row 4I

Select right2 X 4 [Select 2X3 window

window from I indicated from T, indicated by iI
byL. PasstoP 4 -P7 [passl-stcolumn toP

Q onrows(L,L+l)by One T- Q on c

angle i-1, P4 -P7 stage Compute 0 stage ,(jj+) of T by

(on right window) FtFO by3P o

L=L+1
Pass 2 X 3 window
from T to P1 -P3

yes is 3s
no (3 on rows (W+1) Q on rows (i,i+l)n ofI byangle of T by the angle 0

L=1 on left window by processors P1 -P3

I
.... continued

I

91

12

i=i+1 ii+1

onex noag

Figure 4.11: FocatooertosfromtIn

eigenvalues and eignvector

92 5
P1 to P3 will have zeros as inputs and produce zeros as outputs for any angle.

Next, the previously selected 2 X 3 window is passed to the processors P1 to P3 I
and QjT is performed by the angle 0 1 received from P0 . The counters i and j are

incremented by one. I
Now j=7 which is less than 8 (m=8) the operation is repeated for Q7. Also

i=2 which is less than m, so the above procedure is repeated for Q2
T. On the next 5

incrementation of i and j, i becomes 3 and j becomes 8 which does not satisfy the

condition j<m thus resetting j to 1. This also frees the first two columns and Q,

operation can be performed. Note that, the Q operation lags behind the QT 3
operations by two steps. For example when Q1T and Q2T are being computed for

the 3-rd iteration, Q6 and Q7 of the 2-nd iteration are being executed. Q6 and Q7 3
are being computed for the last iteration of one matrix while Q1T and Q2T are

being performed in the first iteration of a new matrix. U
When i=m, it indicates that all the rows of the matrix have been covered

for the QT operation and K is incremented by one. As long as k __ x (where x is 3
the predetermined number of iterations), the process is continued and when k>x,

the eigenvalues are transferred to the next stage. To check the convergence of

the decomposition, we have two options. 3
[1] We can have one CORDIC block and perform unspecified number of

iterations until it converges. 3
(21 We can predetermine the number of iterations x

4.9.2: Eigenvector computation: 3
This is similar to the eigenvalue computation except that the column

operations are not performed. First the memory is initialized to 0. The first row I
I

93

of the I matrix is loaded and the counters are initialized to i=1, L=m-1 and k=1.

The left 2 X 4 window on rows i and i+1 is selected and the next row of the input

matrix is loaded into the memory. Next the right 2 X 4 window on rows L and

L+1 is selected and passed to the processors P4 to P7 and the QT operation is

performed by the angle ei_1 which is received from the processor P0 through a

one stage FIFO. Then the QT operation is performed on the left 2 X 4 window of I

by the angle 6j. The counters L and i are incremented by one and the conditions

are checked. The count of L will be 8 in the first pass which is not less than m

and L will be reset to 1. When i =m, k is incremented by 1 and once the preset

number of iterations are performed. the eigenvectors are transferred to the next

stage.

Note that L lags i by one operation meaning that when i=1, QT is being done

on the left 2 X 4 window of rows i and i+1 and L=7 which does the QT on the

right 2 X 4 window of rows 7 and 8 of the previous iteration or the last iteration

of the previous matrix.

The CORDIC Algorithm is an attractive option considering its simplicity,

accuracy and its capablity for high speed execution via parallel processing. It is

highly flexible and is programmable in the sense that the same processor (or a

similar one) can perform a wide variety of functions. In our example, the

structure of the processors which do the rotation computation and the angle

computation are the same and the only difference is that a few of the input

programmable bits are different.

Lange et al [211 have presented a CMOS CORDIC processor which has a

throughput of 100ns with 16 bits accuracy and has 72 inputs and 67 outputs.

94 1
Considering the degree of advancement of today's CMOS technology, more than

100 CORDIC processors can be fit into one single chip [25]. Depending on the i
area and speed constraints, we can either select

1] One CORDIC processor block, which performs an unspecified number of

iterations until convergence is achieved. In this case, only one matrix can

be processed at a time and the next matrix can be loaded only after the

current matrix has converged resulting in lower throughput, but i
consuming less area.

21 We can pre-specify the number of iterations and provide one CORDIC block

for every iteration. Here, pipelining is achieved at the cost of area. I
Further work on the application of CORDIC approach to MUSIC/ESPIRIT

algorithm is in progress.

I
I

I

I
i
U
U
I

Chapter V

DOA ESTIMATION FOR WIDEBAND SOURCES

In the previous chapters mainly DOA estimation for narrowband sources are

described. Narrowband approaches for DOA estimation have been extended for

wideband emitter sources. In the following sections, some of the available wideband

DOA algorithms available in the literature are discussed. After studying these

algorithms, one of them will be selected for further study to develop real time

hardware.

Su and Morf [27] has presented an approach to estimate DOA of wide-band

sources. They decompose the rational spectra of the emitters into elementary modes

characterized by their poles. The location estimates are derived for each mode using

the signal subspace approach. It is claimed in their work that, using modal

decomposition signal subspace algorithm asymptotically, exact location estimates

can be obtained. In their algorithm more emitters can be resolved than the number

of sensors. The emitters may be correlated or coherent and required knowledge of

the noise spectra is also minimal. This MDSS algorithm requires the following

steps:

1. Estimation of the multichannel covariance sequence.

2. Estimation of poles by overdetermined Yule-Walker method.

3. Estimation of residues.

4. Emitter location estimation from peaks of the spatial spectrum

i.e. application of MUSIC algorithm.

95

1
96 1

The previous MDSS algorithm of Su and Morf has been extended for DOA

estimation for wide-band signals using the ESPRIT algorithm by Ottersten and

Kailath [28]. Their approach is similar to Su and Morf, the only difference is that I
ESPRIT algorithm is applied instead of MUSIC. Following steps are required for this

algorithm

1. Estimate the covariance of the output of the array.

2. Estimate the system poles and residues.

3. Determine the dimension of the signal subspace at the system I
poles and find vectors that span this space. 5

4. Estimate the angles of arrival using ESPRIT.

Wang and Kaveh [39] have proposed another method of detection and estimating I

the DOA of multiple wide-band sources. Their method requires computat i;>- of

discrete Fourier transform on the output of the array. Covariance is estimated in U
different frequency bins. The approximate transformation matrices are computed 3
using initial estimates of DOA's and the array manifold. The signal subspaces at

discrete frequencies are estimated. The eigendecomposition is performed and then 3
MUSIC algorithm is applied to find DOAs.

An extension of Wang and Kaveh method [40] has been proposed by Shaw

and Kumaresan [261. They used a simple bilinear transformation matrix and the

approximation resulting from dense and equally spaced array structure has been 3
used. This is done to combine the individual narrowband spectral matrices for

coherent processing. This method is non-iterative and initial estimates of the DOA 1
are not required.

This method of DOA estimation of wideband signals seems very attractive 3
I

97

and was easy to simplify. A pipelined flowchart of this method is shown in Figure

5.1. In this flowchart, it is assumed that there are 8 sensws. First of all data is

collected from all the sensors. It is also assumed that data is collected for 64 segments

and each segment will consist of 64 samples. FFT is performed and then covariance

matrices are computed which are then averaged. G and Gn are computed in parallel

each requiring two matrix multiplications. A Choleski decomposition is performcd

to convert G into standard form which will make eigendecomposition little easier.

Eigendecomposition can be performed by previously discussed Householder

transformation and QR method. Using eigenvalues, number of sources are

estimated and then finally angle of arrival can be estimated.

At this time we are further studying this algorithm in order to develop its

architecture.

Collect X (W

i=l..8;n=1..N

Compute FFT for every Xni(t)
X ((L) L=L ... L

ni I I +nfI
Compute X n ((eL) ((e!,)L)I

L= I 1 +nf
I I

Compute Average for

1 X .*(L) X (mL)
n l= nk

Nn=i

Form
A N H

K(wl)= II X (oL) X ((L)

Nn=l 3
I=L,L+1 ... L

1 I I+nf 3
I I

Compute
L nt

A H

G = I T(wL) K(oeL) T(wL)
L=L1

and

I

Ll+nf H

G= I T(wL) Pn (oeL) T(oL)
L=LI

I I
(Perform Choleski Decomposition)

Convert GX = G X3
to the standard eigenvalue
HY =Y

Perform eigendecomposition
- position of (G, I)

i UContinued...

99

Continued...

Obtain

I l

I ni

estimatesd number of sources

I

P(O)

k=d+I 9k

where

a
0C

(W l) n- I

Figure 5.1 Estimation of angles of arrivals of broadband signals

Chapter VI

CONCLUSIONS

The work performed for the development of parallel architecture for sei.sor

array algorithms for the last six months has been described in aecuon 6.1 and future

work is given in sec.Ion 6.2. Further results, rccommen-'atio~is, s;aggestions and

conclusions will be presented in the finat report.

6.2:WORK PERFORMED

1. A Literature survey has been performed and investigated for various

algorithms available for narrow band and wide band cases.

2. In the area of narrow band, MUSIC and ESPRIT algorithms were selected

and further studied. These algorithm were converted into computationaly efficient

algorithms and subsequently parallelized. Three different architectures namely

Systolic architectures, Cordic processors andl SIMD are under consideration.

3.These algorithms required eigenvalue decomposition. Householder

transformation was used to convrt covariance matrix into tridiagonal matrix. The

QR method was used to finally obtair eigenvalues and eigenvectors. The detailed

.;vstolic architecture is being developed for parallelized Householder

transformat:ons and QR method.

4. Single inctruction multiple data (SIMD) type of architectures lend

themselves for the implementation of narrow band DOA estimation. The

computation of covariance matrix, Householders transformation and QR method

con be easily computed using SIMD machine. The work on SIMD machine is under

progress.

100

I
101 3

5. A third approach of utilizing cordic processors is also being investigated for

the implementation of eigendecomposition. i
6. In the case of wideband DOA estimations, various algorithms available in

the literature were studied. It was found that wideband DOA estimation is more

computationaly intensive than narrow band case. An algorithm proposed by Shaw

has been selected for further study. This algorithm again has been modified and

substituted with computionally efficient operations. A parallelized flowchart has

been developed. A block diagram for its hardware has also been developed. Other

available algorithms are also under investigation.

I
6.3: FUTURE WORK I
1. Detailed architecture design will be done for both MUSIC and ESPRIT algorithms.

2. Interface modules will be designed to transfer data from one computational i
module to another. 3

3. High level simulation will be performed for MUSIC and ESPRIT to check finite

precision effects and finali7e word length for various modules.

4. A simulation will be performed for the architecture itself using VHDL language

of Workview 4.0 software from Viewlogic. i
5. A detailed architecture will also be developed for the wideband case.

6. An algorithm equivalent to QR method is being investigated which may be more

efficient than the presently proposed algorithm. 3
7. Modifications to ESPRIT algorithm are being studied.

8. A study will be performed to estimate real time requirements for the i
computations of DOA. Based on this study, real time architecture for the i

computation of MUSIC and ESPRIT will be proposed. I
I

102

REFERENCES

[1] C. H. Knapp and G. C. Carter, "The generalized correlation method for estimation

of Lime delay, " IEEE Trans. Acoustic, Speech and Signal Processing, Vol. ASSP-

24, pp. 320-327, Aug. 1976.

[2] J. Capon, "High resolution frequency-wavenumber spectrum analysis. Proc. IEEE,

Vol. 57, pp. 1408-1418, Aug. 1969.

[3] J. P. Burg, "Maximum entropy spectral analysis," in Proc. 37th Ann. Int. SEG

Meet. Oklahoma City, OK, 1967.

[4] R. 0. Schmith, "Multiple emitter location and signal parameter estimation," IEEE

Trans. on Antennas and Propagation, Vol AP-34 No. 3., pp. 276-280, Mar. 1986.

[51 R. Roy and T. Kailath, "ESPRIT-Estimation of signal parameters via rotational

invariance techniques, " in proc IEEE Trans. Acoustic, Speech and Signal

Processing, Vol. 37, No. 7, pp. 984-995, July 1989.

[61 D. Spielman, A. Paulraj, "Performance analysis of the MUSIC algorithm," in proc.

IEEE Conf. Acoustic, Speech and Signal Processing, Tokyo, Japan, pp 1909-1912,

Apr 1986.

[7] T. J. Shan, A. Paulraj, "On smoothed rank profile tests in eigenstructure approach

to direction-of-arrival estimation," in proc. IEEE Conf. Acoustic, Speech and

Signal Processing, Tokyo, Japan, pp 1905-1908, Apr 1986.

i
103

[81 G.H. Go'ub, C. F. Van Loan " An analysis of the total least square problem,

SIAM J. Numerical Analysis. Vol 17. N 17, December 1980. 1

[9] C. Y. Chen and J. A. Abraham, "Fault -tolerant systems for computations of

eigenvalues and singular value" SPIE Vol.696 Advanced algorithm and

architecture for signal processing, pp 228-237, 1986 I
[101 J. J. Dongarra and D. C. Sorensen, "On the implementation of fully parallel

algorithm for symmetric eigenvalue problem", SPIE Vol. 696 Advanced

algorithm and architecture for signal processing, pp 45-53, 1986

[11] J. H. Wilkinson, "The algebriac eigenvalue problem," Clarendon Press, Oxford, i
Chapter 4, 1965

[12] C. F. T. Tang, K. J. R. Liu and S. A. Tretter, "On systolic array for recursive

complex Householder transformations with applications to array processing.",

in proc. IEEE Conf. Acoustic, Speech and Signal Processing, Toronto, Canada, pp i

1033-1036, Apr 1991

[131 K. J. R. Liu, S. F. Heieh, K. Yao,"Two level pipelined implementation of systolic 3
block Householder transformations."in proc. IEEE Conf. Acoustic, Speech and

Signal Processing, pp 1631-1634, Alburquerque, NM. Apr 1990. 3

[141 S. Y. Kung VLSI array processors, Prentice Hall, Englewood Cliffs, NJ. 1987. 3
i

[151 W.Phillips and W.Robertson,"Systolic architecture for symmetric tridiagonal

eigenvalue problem", IEEE International conference on systolic arrays, pp. 145- 3
I

104

150, 1988.

[16] K.J.R.Liu and K.Yao, "Multiphase systolic architecture for spectral

decomposition," 1990 International conference on parallel processing, pp 1-123 to

1-126.

[17] Volder J.E., "The CORDIC trigonometric computing technique", IRE

transactions. electronic computers, EC-8, No.3, pp. 330-334, Joint computer

conference, San Fransisco, California, 1956.

[181 Walther J.S., "A unified algorithm for elementary functions" Spring joint

computer conference, AFIPS conference proceedings, 38, pp. 379-385, 1971.

[191 Gene L. Haviland and Al A. Tuszynski, "A CORDIC arithmetic processor chip",

IEEE transactions on computers, Vol.c-29, No.2, pp. 68-79, February 1980.

[201 H.M. Ahmed et al, "A VLSI speech analysis chip set utilizing co-ordinate

rotation arithmetic", IEEE Int. Symp. on Circuits and Systems, pp. 737-741, 1981.

[211 A. A. J. de Lange et al, "An optimal floating-point pipeline CMOS COIDIC

processor", IEEE Int. Symp. on Circuits and Systems, pp. 2043-2047, 1988.

[22] D. H. Daggett, "Decimal-binary conversions in CORDIC", IRE transactions on

electronic computers, EC-8, No.3, pp. 335-339, Joint computer conference, San

Fransisco, California, 1956.

[23] Ahmed et al, "Highly concurrent computing structures for matrix arithmetic

105

and signal processing", IEEE Computer, pp. 65-81, January 1982.

[241 Milos D. Ercegovac and Tomas Lang, "Implementation of fast angle calculation

and rotation using on-line CORDIC", IEEE Int. Symp. on Circuits and Systems,

pp. 2703-2706, 1988. 3
[25] S.C. Bass et al, "A bit-serial, floating-point CORDIC processor in VLSI", IEEE Int. i

Conf. on Acoustics, Speech and Signal Processing, V3.1, PP. 1165-1168, Toronto,

Canada, 1991.

U
[26] Arnab K. Shaw and Ramdas Kumaresan, "Estimation of angles of arrivals of

broadband signals", IEEE ICASSP-87, pp.2296-2299, 1987. 1
[27] Guaning Su and Martin Morf, "modal decomposition signal subspace

algorithms", IEEE Trans. on Acoustics, Speech, and Signal Processing, VOL. 3
ASSP-34, No. 3, pp. 585-602, June 1986. I

[28] Bjorn Ottersten and Thomas Kailath, "Direction-of-arrival estimation for wide-

band signals using the ESPRIT algorithm", IEEE Trans. on Acoustics, Speech, and

Signal Processing, VOL. 38, No. 2, pp. 317-327, February 1990. 3
[291 Kevin M. Buckley and LLoyd J. Griffiths, "Broad-band signal-subspace spatial- I

spectrum (BASE-ALE) estimation", IEEE Trans. on Acoustics, Speech, and Signal

Processing, VOL. 36, No. 7, July 1988.

I
[30] G. C. Carter, [Editor], "Special issue on time-delay estimation", IEEE Trans. on

ASSP, VOL. 29, No. 3, 1981. 3
I

106

[311 C. H. Knapp and G. C. Carter, "The generalized correlation...", IEEE Trans.

ASSP, VOL. 24, No. 4, pp. 320-237, 1976.

[321 W. 1. Bangs and P. Schultheiss, "Space-Time processing...", in Signal Processing,

J. W. R. Griffiths et al, Eds. New York, Academic Press, pp. 577-590, 1973.

[331 W. R. Hahn and S. A. Tretter, "Optimum processing for ... ", IEEE Trans. IT,

VOL. 19, No. 5, pp. 608-614.

[34] M. Wax and T. Kailath, "Optimum localizations of multiple source by passive

arrays", in proc. IEEE Trans. Acoustic, Speech and Signal Processing vol. ASSP-31,

No. 5, pp. 1210-1218, Oct. 1983.

[351 M. Morf. et al, "Investigation of new algorithms ...", DARPA Tech. Rept., No.

M-355-1.

[361 B. Porat and B. Frienlander, "Estimation of spatial and spectral parameters of

multiple sources", IEEE Trans. on info. theory, vol. IT-29, pp. 412-425, May 1983.

[371 A. Nehorai, G. Su, M. Morf, "Estimation of time difference of arrivals for

multiple ARMA sources by pole decomposition", in proc. IEEE Trans. Acoustic,

Speech and Signal Processing, vol. ASSP-31, pp. 1478-1491, Dec. 1983.

[381 M. Wax T. J. Shan and T.Kailath, "Spatio-temporal spectral analysis by

eigenstructure method", in proc. IEEE Trans. Acoustic, Speech and Signal

Processing, vol. ASSP-32, No. 4, Aug. 1984.

I

I

107

[39] H. Wang and M. Kaveh, "Estimation of angles-of -arrival for wide-band U
sources", in proc. IEEE Trans. Acoustic, Speech and Signal Processing, pp. 7.5.1-

7.5.4, Mar. 19-21, 1984. I
[40] H. Wang and M. Kaveh, "Coherent Signal Subspace processing for the detection

and estimation of angle of arrival of multiple wide-band sources", in proc. IEEE i
Trans. Aco istic, Speech and Signal Processing, vol. ASSP-33, No. 4, pp. 823-831,

Aug. 1985.

i
[41] T. L. Henderson, "Rank Reduction for Broadband ...", in proc. 19th Asilomar

Conf. on Circ., Syst. & Comp., Nov. 1985. I
I
I
I
I
I
In
I
I
i
I

